Cargando…

Generalized Linear Models

The success of the first edition of Generalized Linear Models led to the updated Second Edition, which continues to provide a definitive unified, treatment of methods for the analysis of diverse types of data.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: McCullagh, P.
Otros Autores: Nelder, J. A.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boca Raton : Routledge, 2018.
Edición:2nd ed.
Colección:Chapman and Hall/CRC Monographs on Statistics and Applied Probability.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_on1083036692
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 190119s2018 flu o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d AU@  |d OCLCQ  |d TUHNV  |d OCLCO  |d OCLCF  |d SGP  |d OCLCQ  |d OCLCO  |d OCLCL 
020 |a 9781351445856 
020 |a 1351445855 
035 |a (OCoLC)1083036692 
050 4 |a QA276.M38 1999 
082 0 4 |a 519.5 
049 |a UAMI 
100 1 |a McCullagh, P. 
245 1 0 |a Generalized Linear Models 
250 |a 2nd ed. 
260 |a Boca Raton :  |b Routledge,  |c 2018. 
300 |a 1 online resource (532 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Chapman and Hall/CRC Monographs on Statistics and Applied Probability ;  |v v. 37 
588 0 |a Print version record. 
505 0 |a Cover; Title Page; Copyright Page; Dedication; Table of Contents; Preface to the first edition; Preface; 1: Introduction; 1.1 Background; 1.1.1 The problem of looking at data; 1.1.2 Theory as pattern; 1.1.3 Model fitting; 1.1.4 What is a good model?; 1.2 The origins of generalized linear models; 1.2.1 Terminology; 1.2.2 Classical linear models; 1.2.3 R.A. Fisher and the design of experiments; 1.2.4 Dilution assay; 1.2.5 Probit analysis; 1.2.6 Logit models for proportions; 1.2.7 Log-linear models for counts; 1.2.8 Inverse polynomials; 1.2.9 Survival data; 1.3 Scope of the rest of the book 
505 8 |a 1.4 Bibliographic notes1.5 Further results and exercises 1; 2: An outline of generalized linear models; 2.1 Processes in model fitting; 2.1.1 Model selection; 2.1.2 Estimation; 2.1.3 Prediction; 2.2 The components of a generalized linear model; 2.2.1 The generalization; 2.2.2 Likelihood functions; 2.2.3 Link functions; 2.2.4 Sufficient statistics and canonical links; 2.3 Measuring the goodness of fit; 2.3.1 The discrepancy of a fit; 2.3.2 The analysis of deviance; 2.4 Residuals; 2.4.1 Pearson residual; 2.4.2 Anscombe residual; 2.4.3 Deviance residual 
505 8 |a 2.5 An algorithm for fitting generalized linear models2.5.1 Justification of the fitting procedure; 2.6 Bibliographic notes; 2.7 Further results and exercises 2; 3: Models for continuous data with constant variance; 3.1 Introduction; 3.2 Error structure; 3.3 Systematic component (linear predictor); 3.3.1 Continuous covariates; 3.3.2 Qualitative covariates; 3.3.3 Dummy variates; 3.3.4 Mixed terms; 3.4 Model formulae for linear predictors; 3.4.1 Individual terms; 3.4.2 The dot operator; 3.4.3 The + operator; 3.4.4 The crossing (*) and nesting (/) operators 
505 8 |a 3.4.5 Operators for the removal of terms3.4.6 Exponential operator; 3.5 Aliasing; 3.5.1 Intrinsic aliasing with factors; 3.5.2 Aliasing in a two-way cross-classification; 3.5.3 Extrinsic aliasing; 3.5.4 Functional relations among covariates; 3.6 Estimation; 3.6.1 The maximum-likelihood equations; 3.6.2 Geometrical interpretation; 3.6.3 Information; 3.6.4 A model with two covariates; 3.6.5 The information surface; 3.6.6 Stability; 3.7 Tables as data; 3.7.1 Empty cells; 3.7.2 Fused cells; 3.8 Algorithms for least squares; 3.8.1 Methods based on the information matrix 
505 8 |a 3.8.2 Direct decomposition methods3.8.3 Extension to generalized linear models; 3.9 Selection of covariates; 3.10 Bibliographic notes; 3.11 Further results and exercises 3; 4: Binary data; 4.1 Introduction; 4.1.1 Binary responses; 4.1.2 Covariate classes; 4.1.3 Contingency tables; 4.2 Binomial distribution; 4.2.1 Genesis; 4.2.2 Moments and cumulants; 4.2.3 Normal limit; 4.2.4 Poisson limit; 4.2.5 Transformations; 4.3 Models for binary responses; 4.3.1 Link functions; 4.3.2 Parameter interpretation; 4.3.3 Retrospective sampling; 4.4 Likelihood functions for binary data 
500 |a 4.4.1 Log likelihood for binomial data 
520 3 |a The success of the first edition of Generalized Linear Models led to the updated Second Edition, which continues to provide a definitive unified, treatment of methods for the analysis of diverse types of data. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Linear models (Statistics) 
650 7 |a Linear models (Statistics)  |2 fast 
700 1 |a Nelder, J. A. 
758 |i has work:  |a Generalized linear models (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGhDvPmJ8WpMcC6wjh6RJC  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a McCullagh, P.  |t Generalized Linear Models.  |d Boca Raton : Routledge, ©2018  |z 9780412317606 
830 0 |a Chapman and Hall/CRC Monographs on Statistics and Applied Probability. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5631551  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5631551 
994 |a 92  |b IZTAP