Catalyst Handbook
This book bridges the gap between theory and practice. It provides fundamental information on heterogeneous catalysis and the practicalities of the catalysts and processes used in producing ammonia, hydrogen and methanol via hydrocarbon steam reforming. It also covers the oxidation reactions in maki...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Boca Raton :
Routledge,
2018.
|
Edición: | 2nd ed. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover; Title Page; Copyright Page; Contributors; Table of Contents; Preface; Chapter 1. Fundamental Principles; 1.1. Fundamentals of Heterogeneous Catalysis; 1.1.1. Introduction; 1.1.2. The Role of Catalysis; 1.1.2.1. Ammonia Synthesis; 1.1.2.2. Ammonia Oxidation; 1.1.3. The Nature of the Catalytic Process; 1.1.4. Catalyst Activity; 1.1.5. Catalyst SeIectivity; 1.1.6. Steps in the Catalytic Process; 1.1.7. Adsorption and Desorption; 1.1.8. Catalyst Design; 1.2. Catalyst Manufacture; 1.2.1. Introduction; 1.2.2. Unsupported Metals; 1.2.3. Fused Catalysts
- 1.2.4. Wet Methods of Catalyst Manufacture1.2.5. Fundamentals of Precipitation Processes; 1.2.6. Catalyst Manufacture by Precipitation Processes; 1.2.7. Impregnation Processes; 1.2.8. Forming Stages; 1.3. Catalyst Testing; 1.3.1. Introduction; 1.3.2. Chemical and Physical Properties; 1.3.3. Bulk Chemical Properties; 1.3.4. Surface Chemical Properties; 1.3.5. Physical Properties; 1.3.6. Catalyst Performance; 1.3.7. Coarse Laboratory Screening; 1.3.8. Fine Laboratory Screening; 1.3.9. Semi-technical Catalyst Testing; 1.3.10. Reaction Kinetics; 1.3.11. Catalyst Ageing
- 1.3.12. Mechanism of the Catalytic Reaction1.3.12.1. Ammonia Synthesis; 1.3.12.2. Methanol Synthesis; 1.4. Catalyst in Use; 1.4.1. Introduction; 1.4.2. Pretreatment and Activation; 1.4.3. Loss of Catalyst Performance; 1.4.4. Physical Causes of Decay; 1.4.5. Poisoning by Impurities in Feeds or Catalysts; 1.4.6. Poisoning by Reactants or Products; 1.4.7. Interactions in Catalyst Deactivation; Chapter 2. Process Design, Rating and Performance; 2.1. Design of Catalytic Reactors; 2.1.1. Operating Temperature and Pressure; 2.1.1.1. Desulphurization Reactor; 2.1.1.2. Steam Reformers
- 2.1.1.3. Water-gas Shift Reactors2.1.1.4. Methanation Reactor; 2.1.1.5. Ammonia and Methanol Synthesis Reactors; 2.1.2. Converter Types; 2.1.2.1. Single Adiabatic Bed; 2.1.2.2. Quench Converter; 2.1.2.3. Inter-bed Cooling; 2.1.2.4. ICI High-conversion Reactor; 2.1.2.5. Tube-cooled Reactor; 2.1.2.6. Steam-raising Reactor; 2.1.3. Catalyst Life; 2.1.4. Optimum Catalyst Size and Shape; 2.1.4.1. Voidage; 2.1.4.2. Catalyst Particle Size; 2.1.5. Design Conversion of Reactor; 2.1.6. Calculation of Catalyst Volume; 2.1.6.1. Catalyst Volume for Low concentration Reactant Being Removed
- 2.1.6.2. Catalyst Volume for Low concentration Product Being Formed2.1.6.3. Equilibrium Concentrations; 2.1.6.4. Rate Constants; 2.1.7. Vessel Dimensions; 2.2. Reactor Rating; 2.2.1. Optimum Operating Temperature; 2.3. Catalyst Performance; 2.3.1. Fall in Apparent Catalyst Activity; 2.3.1.1. Poisoning/Sintering; 2.3.1.2. Poor Gas Distribution; 2.3.1.3. Poor Mixing of Reactants; 2.3.2. Increase in Pressure Drop; 2.3.2.1. Breakage or Erosion of Catalyst ParticIes; 2.3.2.2. Disintegration of Catalyst ParticIes; 2.3.2.3. Deformation of Catalyst ParticIes; 2.3.2.4. Carry-over onto Catalyst Bed