Cargando…

Matrix differential calculus with applications in statistics and econometrics /

A brand new, fully updated edition of a popular classic on matrix differential calculus with applications in statistics and econometrics This exhaustive, self-contained book on matrix theory and matrix differential calculus provides a treatment of matrix calculus based on differentials and shows how...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Magnus, Jan R. (Autor), Neudecker, Heinz (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, NJ : John Wiley & Sons, Inc., 2019.
Edición:Third edition.
Colección:Wiley series in probability and statistics
Temas:
Acceso en línea:Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_on1081339087
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 190103t20192019nju ob 001 0 eng
010 |a  2018061567 
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d OCLCO  |d OCLCF  |d EBLCP  |d N$T  |d UKMGB  |d UKAHL  |d DG1  |d YDX  |d OCLCQ  |d UPM  |d UMI  |d OTZ  |d OCLCQ  |d DLC  |d VT2  |d K6U  |d OCLCO  |d OCLCQ  |d BRX  |d OCLCQ  |d OCLCO 
015 |a GBB957764  |2 bnb 
016 7 |a 019312068  |2 Uk 
019 |a 1090301579  |a 1091688487  |a 1113867414  |a 1119061541  |a 1124317534 
020 |a 9781119541196  |q (electronic book) 
020 |a 1119541190  |q (electronic book) 
020 |a 9781119541219  |q (electronic book) 
020 |a 1119541212  |q (electronic book) 
020 |a 9781119541165  |q (electronic book) 
020 |a 1119541166  |q (electronic book) 
020 |z 9781119541202  |q (hardcover) 
024 8 |a 9781119541202 
029 1 |a AU@  |b 000065138311 
029 1 |a AU@  |b 000065220180 
029 1 |a AU@  |b 000066232111 
029 1 |a AU@  |b 000066529200 
029 1 |a CHNEW  |b 001055823 
029 1 |a CHVBK  |b 56874229X 
029 1 |a UKMGB  |b 019312068 
029 1 |a AU@  |b 000067100368 
029 1 |a AU@  |b 000070700775 
035 |a (OCoLC)1081339087  |z (OCoLC)1090301579  |z (OCoLC)1091688487  |z (OCoLC)1113867414  |z (OCoLC)1119061541  |z (OCoLC)1124317534 
037 |a 9781119541165  |b Wiley 
042 |a pcc 
050 1 4 |a QA188  |b .M34 2019 
072 7 |a MAT  |x 002040  |2 bisacsh 
082 0 0 |a 512.9/434  |2 23 
049 |a UAMI 
100 1 |a Magnus, Jan R.,  |e author. 
245 1 0 |a Matrix differential calculus with applications in statistics and econometrics /  |c Jan R. Magnus and Heinz Neudecker. 
250 |a Third edition. 
264 1 |a Hoboken, NJ :  |b John Wiley & Sons, Inc.,  |c 2019. 
264 4 |c ©2019 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
490 0 |a Wiley series in probability and statistics 
504 |a Includes bibliographical references and indexes. 
505 0 |a Cover; Title Page; Copyright; Contents; Preface; Part One -- Matrices; Chapter 1 Basic properties of vectors and matrices; 1 Introduction; 2 Sets; 3 Matrices: addition and multiplication; 4 The transpose of a matrix; 5 Square matrices; 6 Linear forms and quadratic forms; 7 The rank of a matrix; 8 The inverse; 9 The determinant; 10 The trace; 11 Partitioned matrices; 12 Complex matrices; 13 Eigenvalues and eigenvectors; 14 Schur's decomposition theorem; 15 The Jordan decomposition; 16 The singular-value decomposition; 17 Further results concerning eigenvalues 
505 8 |a 18 Positive (semi)definite matrices19 Three further results for positive definite matrices; 20 A useful result; 21 Symmetric matrix functions; Miscellaneous exercises; Bibliographical notes; Chapter 2 Kronecker products, vec operator, and Moore-Penrose inverse; 1 Introduction; 2 The Kronecker product; 3 Eigenvalues of a Kronecker product; 4 The vec operator; 5 The Moore-Penrose (MP) inverse; 6 Existence and uniqueness of the MP inverse; 7 Some properties of the MP inverse; 8 Further properties; 9 The solution of linear equation systems; Miscellaneous exercises; Bibliographical notes 
505 8 |a Chapter 3 Miscellaneous matrix results1 Introduction; 2 The adjoint matrix; 3 Proof of Theorem 3.1; 4 Bordered determinants; 5 The matrix equation AX = 0; 6 The Hadamard product; 7 The commutation matrix Kmn; 8 The duplication matrix Dn; 9 Relationship between Dn+1 and Dn, I; 10 Relationship between Dn+1 and Dn, II; 11 Conditions for a quadratic form to be positive (negative) subject to linear constraints; 12 Necessary and sufficient conditions for r(A : B) = r(A) + r(B); 13 The bordered Gramian matrix; 14 The equations X1A + X2B′ = G1,X1B = G2; Miscellaneous exercises; Bibliographical notes 
505 8 |a Part Two -- Differentials: the theoryChapter 4 Mathematical preliminaries; 1 Introduction; 2 Interior points and accumulation points; 3 Open and closed sets; 4 The Bolzano-Weierstrass theorem; 5 Functions; 6 The limit of a function; 7 Continuous functions and compactness; 8 Convex sets; 9 Convex and concave functions; Bibliographical notes; Chapter 5 Differentials and differentiability; 1 Introduction; 2 Continuity; 3 Differentiability and linear approximation; 4 The differential of a vector function; 5 Uniqueness of the differential; 6 Continuity of differentiable functions 
505 8 |a 7 Partial derivatives8 The first identification theorem; 9 Existence of the differential, I; 10 Existence of the differential, II; 11 Continuous differentiability; 12 The chain rule; 13 Cauchy invariance; 14 The mean-value theorem for real-valued functions; 15 Differentiable matrix functions; 16 Some remarks on notation; 17 Complex differentiation; Miscellaneous exercises; Bibliographical notes; Chapter 6 The second differential; 1 Introduction; 2 Second-order partial derivatives; 3 The Hessian matrix; 4 Twice differentiability and second-order approximation, I 
588 0 |a Online resource; title from digital title page (viewed on June 21, 2019). 
520 |a A brand new, fully updated edition of a popular classic on matrix differential calculus with applications in statistics and econometrics This exhaustive, self-contained book on matrix theory and matrix differential calculus provides a treatment of matrix calculus based on differentials and shows how easy it is to use this theory once you have mastered the technique. Jan Magnus, who, along with the late Heinz Neudecker, pioneered the theory, develops it further in this new edition and provides many examples along the way to support it. Matrix calculus has become an essential tool for quantitative methods in a large number of applications, ranging from social and behavioral sciences to econometrics. It is still relevant and used today in a wide range of subjects such as the biosciences and psychology. Matrix Differential Calculus with Applications in Statistics and Econometrics, Third Edition contains all of the essentials of multivariable calculus with an emphasis on the use of differentials. It starts by presenting a concise, yet thorough overview of matrix algebra, then goes on to develop the theory of differentials. The rest of the text combines the theory and application of matrix differential calculus, providing the practitioner and researcher with both a quick review and a detailed reference. Fulfills the need for an updated and unified treatment of matrix differential calculus Contains many new examples and exercises based on questions asked of the author over the years Covers new developments in field and features new applications Written by a leading expert and pioneer of the theory Part of the Wiley Series in Probability and Statistics Matrix Differential Calculus With Applications in Statistics and Econometrics Third Edition is an ideal text for graduate students and academics studying the subject, as well as for postgraduates and specialists working in biosciences and psychology. 
542 |f Copyright © 2019 by John Wiley & Sons  |g 2019 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Matrices. 
650 0 |a Differential calculus. 
650 0 |a Statistics. 
650 0 |a Econometrics. 
650 6 |a Matrices. 
650 6 |a Calcul différentiel. 
650 6 |a Économétrie. 
650 6 |a Statistique. 
650 7 |a statistics.  |2 aat 
650 7 |a MATHEMATICS  |x Algebra  |x Intermediate.  |2 bisacsh 
650 7 |a Differential calculus  |2 fast 
650 7 |a Econometrics  |2 fast 
650 7 |a Matrices  |2 fast 
650 7 |a Statistics  |2 fast 
700 1 |a Neudecker, Heinz,  |e author. 
776 0 8 |i Print version:  |a Magnus, Jan R.  |t Matrix differential calculus with applications in statistics and econometrics.  |b Third edition.  |d Hoboken, NJ : Wiley, 2019  |z 9781119541202  |w (DLC) 2018058855 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781119541202/?ar  |z Texto completo 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5732745  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH35822463 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5732745 
938 |a EBSCOhost  |b EBSC  |n 2089013 
994 |a 92  |b IZTAP