Cargando…

Energy Transfers by Convection /

Whether in a solar thermal power plant or at the heart of a nuclear reactor, convection is an important mode of energy transfer. This mode is unique; it obeys specific rules and correlations that constitute one of the bases of equipment-sizing equations. In addition to standard aspects of convention...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Benallou, Abdelhanine
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, NJ : John Wiley and Sons, Inc. : Wiley-ISTE, 2019.
Colección:Energy series (ISTE Ltd.). Energy engineering set ; v. 3.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_on1081304382
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu|||unuuu
008 190109s2019 nju ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d DG1  |d YDX  |d EBLCP  |d RECBK  |d OCLCF  |d MERER  |d OCLCQ  |d UKAHL  |d OCLCQ  |d OCLCO  |d K6U  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 1081353180  |a 1082185645  |a 1084620011 
020 |a 9781119579090  |q (electronic bk.) 
020 |a 1119579090  |q (electronic bk.) 
020 |a 9781119476962  |q (electronic bk.) 
020 |a 1119476968  |q (electronic bk.) 
020 |z 9781786302762 
020 |z 1786302764 
029 1 |a AU@  |b 000065068731 
029 1 |a CHNEW  |b 001039300 
029 1 |a CHVBK  |b 55902763X 
035 |a (OCoLC)1081304382  |z (OCoLC)1081353180  |z (OCoLC)1082185645  |z (OCoLC)1084620011 
050 4 |a TJ260 
072 7 |a TEC  |x 009070  |2 bisacsh 
082 0 4 |a 621.40223  |2 23 
049 |a UAMI 
100 1 |a Benallou, Abdelhanine. 
245 1 0 |a Energy Transfers by Convection /  |c Abdelhanine Benallou. 
264 1 |a Hoboken, NJ :  |b John Wiley and Sons, Inc. :  |b Wiley-ISTE,  |c 2019. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Energy series. Energy engineering set ;  |v volume 3 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from PDF file page (EBSCO, viewed January 11, 2019). 
505 0 |a Cover; Half-Title Page; Title Page; Copyright Page; Contents; Preface; Introduction; 1. Methods for Determining Convection Heat Transfer Coefficients; 1.1. Introduction; 1.2. Characterizing the motion of a fluid; 1.3. Transfer coefficients and flow regimes; 1.4. Using dimensional analysis; 1.4.1. Dimensionless numbers used in convection; 1.4.2. Dimensional analysis applications in convection; 1.5. Using correlations to calculate h; 1.5.1. Correlations for flows in forced convection; 1.5.2. Correlations for flows in natural convection; 2. Forced Convection inside Cylindrical Pipes 
505 8 |a 2.1. Introduction2.2. Correlations in laminar flow; 2.2.1. Reminders regarding laminar-flow characteristics inside a pipe; 2.2.2. Differential energy balance; 2.2.3. Illustration: transportation of phosphate slurry in a cylindrical pipe; 2.2.4. Correlations for laminar flow at pipe entrance; 2.3. Correlations in transition zone; 2.4. Correlations in turbulent flow; 2.4.1. Dittus-Boelter-McAdams relation; 2.4.2. Colburn-Seider-Tate relation; 2.4.3. Illustration: improving transfer by switching to turbulent flow; 2.4.4. Specific correlations in turbulent flow 
505 8 |a 2.4.5. Illustration: industrial-grade cylindrical pipe2.5. Dimensional correlations for air and water; 3. Forced Convection inside Non-cylindrical Pipes; 3.1. Introduction; 3.2. Concept of hydraulic diameter; 3.3. Hydraulic Nusselt and Reynolds numbers; 3.4. Correlations in established laminar flow; 3.4.1. Pipes with rectangular or square cross-sections in laminar flow; 3.4.2. Pipes presenting an elliptical cross-section in laminar flow; 3.4.3. Pipes presenting a triangular cross-section in laminar flow; 3.4.4. Illustration: air-conditioning duct design; 3.4.5. Annular pipes with laminar flow 
505 8 |a 3.5. Correlations in turbulent flow for non-cylindrical pipes3.5.1. Pipes with rectangular or square cross-sections in turbulent flow; 3.5.2. Pipes with elliptical or triangular cross-sections in turbulent flow; 3.5.3. Illustration: design imposes the flow regime; 3.5.4. Annular pipes in turbulent flow; 4. Forced Convection outside Pipes or around Objects; 4.1. Introduction; 4.2. Flow outside a cylindrical pipe; 4.3. Correlations for the stagnation region; 4.4. Correlations beyond the stagnation zone; 4.5. Forced convection outside non-cylindrical pipes 
505 8 |a 4.5.1. Pipes with a square cross-section area4.5.2. Pipes presenting an elliptical cross-section area; 4.5.3. Pipes presenting a hexagonal cross-section area; 4.6. Forced convection above a horizontal plate; 4.6.1. Plate at constant temperature; 4.6.2. Plate with constant flow density; 4.7. Forced convection around non-cylindrical objects; 4.7.1. Forced convection around a plane parallel to the flow; 4.7.2. Forced convection around a sphere; 4.8. Convective transfers between falling films and pipes; 4.8.1. Vertical tubes; 4.8.2. Horizontal tubes; 4.9. Forced convection in coiled pipes 
520 |a Whether in a solar thermal power plant or at the heart of a nuclear reactor, convection is an important mode of energy transfer. This mode is unique; it obeys specific rules and correlations that constitute one of the bases of equipment-sizing equations. In addition to standard aspects of convention, this book examines transfers at very high temperatures where, in order to ensure the efficient transfer of energy for industrial applications, it is becoming necessary to use particular heat carriers, such as molten salts, liquid metals or nanofluids. With modern technologies, these situations are becoming more frequent, requiring appropriate consideration in design calculations. Energy Transfers by Convection also studies the sizing of electronic heat sinks used to ensure the dissipation of heat and thus the optimal operation of circuit boards used in telecommunications, audio equipment, avionics and computers. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Heat  |x Conduction. 
650 0 |a Heat  |x Transmission. 
650 0 |a Heat engineering. 
650 0 |a Renewable energy sources. 
650 6 |a Chaleur  |x Conduction. 
650 6 |a Chaleur  |x Transmission. 
650 6 |a Thermique. 
650 6 |a Énergies renouvelables. 
650 7 |a heat transmission.  |2 aat 
650 7 |a TECHNOLOGY & ENGINEERING  |x Mechanical.  |2 bisacsh 
650 7 |a Heat  |x Conduction  |2 fast 
650 7 |a Heat engineering  |2 fast 
650 7 |a Heat  |x Transmission  |2 fast 
650 7 |a Renewable energy sources  |2 fast 
758 |i has work:  |a Energy Transfers by Convection (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFYwjgHBMYfp7wvg4cBkjC  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Benallou, Abdelhanine.  |t Energy Transfers by Convection.  |d Hoboken, NJ : John Wiley and Sons, Inc. : Wiley-ISTE, 2019  |z 1786302764  |z 9781786302762  |w (OCoLC)1076549954 
830 0 |a Energy series (ISTE Ltd.).  |p Energy engineering set ;  |v v. 3. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5630270  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH35581918 
938 |a Askews and Holts Library Services  |b ASKH  |n AH35581914 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5630270 
938 |a EBSCOhost  |b EBSC  |n 1995240 
938 |a Recorded Books, LLC  |b RECE  |n rbeEB00750907 
938 |a YBP Library Services  |b YANK  |n 15986039 
938 |a YBP Library Services  |b YANK  |n 15963912 
994 |a 92  |b IZTAP