Cargando…

Dilations, linear matrix inequalities, the matrix cube problem, and beta distributions /

An operator C on a Hilbert space \mathcal H dilates to an operator T on a Hilbert space \mathcal K if there is an isometry V:\mathcal H\to \mathcal K such that C= V^* TV. A main result of this paper is, for a positive integer d, the simultaneous dilation, up to a sharp factor \vartheta (d), expresse...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Helton, J. William, 1944- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, RI : American Mathematical Society, 2019.
Colección:Memoirs of the American Mathematical Society ; no. 1232.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Introduction
  • Dilations and Free Spectrahedral Inclusions
  • Lifting and Averaging
  • A Simplified Form for $\vartheta $
  • $\th $ is the Optimal Bound
  • The Optimality Condition $\myal =\mybe $ inTerms of Beta Functions
  • Rank versus Size for the Matrix Cube
  • Free Spectrahedral Inclusion Generalities
  • Reformulation of the Optimization Problem
  • Simmons' Theorem for Half Integers
  • Bounds on the Median and the Equipoint of the Beta Distribution
  • Proof of Theorem 1.2
  • Estimating $\th (d)$ for Odd $d$
  • Dilations and Inclusions of Balls
  • Probabilistic Theorems and Interpretations Continued