Dilations, linear matrix inequalities, the matrix cube problem, and beta distributions /
An operator C on a Hilbert space \mathcal H dilates to an operator T on a Hilbert space \mathcal K if there is an isometry V:\mathcal H\to \mathcal K such that C= V^* TV. A main result of this paper is, for a positive integer d, the simultaneous dilation, up to a sharp factor \vartheta (d), expresse...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, RI :
American Mathematical Society,
2019.
|
Colección: | Memoirs of the American Mathematical Society ;
no. 1232. |
Temas: | |
Acceso en línea: | Texto completo |
Sumario: | An operator C on a Hilbert space \mathcal H dilates to an operator T on a Hilbert space \mathcal K if there is an isometry V:\mathcal H\to \mathcal K such that C= V^* TV. A main result of this paper is, for a positive integer d, the simultaneous dilation, up to a sharp factor \vartheta (d), expressed as a ratio of \Gamma functions for d even, of all d\times d symmetric matrices of operator norm at most one to a collection of commuting self-adjoint contraction operators on a Hilbert space. |
---|---|
Notas: | "January 2019, volume 257, number 1232 (second of 6 numbers)." "Keywords:Dilation, completely positive map, linear matrix inequality, spectrahedron, free spectrahedron, matrix cube problem, binomial distribution, beta distribution, robust stability, free analysis"--Online information |
Descripción Física: | 1 online resource (v, 106 pages) |
Bibliografía: | Includes bibliographical references (pages 101-104 and index. |
ISBN: | 1470449471 9781470449476 |
ISSN: | 1947-6221 ; 0065-9266 |