Cargando…

Dilations, linear matrix inequalities, the matrix cube problem, and beta distributions /

An operator C on a Hilbert space \mathcal H dilates to an operator T on a Hilbert space \mathcal K if there is an isometry V:\mathcal H\to \mathcal K such that C= V^* TV. A main result of this paper is, for a positive integer d, the simultaneous dilation, up to a sharp factor \vartheta (d), expresse...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Helton, J. William, 1944- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, RI : American Mathematical Society, 2019.
Colección:Memoirs of the American Mathematical Society ; no. 1232.
Temas:
Acceso en línea:Texto completo
Descripción
Sumario:An operator C on a Hilbert space \mathcal H dilates to an operator T on a Hilbert space \mathcal K if there is an isometry V:\mathcal H\to \mathcal K such that C= V^* TV. A main result of this paper is, for a positive integer d, the simultaneous dilation, up to a sharp factor \vartheta (d), expressed as a ratio of \Gamma functions for d even, of all d\times d symmetric matrices of operator norm at most one to a collection of commuting self-adjoint contraction operators on a Hilbert space.
Notas:"January 2019, volume 257, number 1232 (second of 6 numbers)."
"Keywords:Dilation, completely positive map, linear matrix inequality, spectrahedron, free spectrahedron, matrix cube problem, binomial distribution, beta distribution, robust stability, free analysis"--Online information
Descripción Física:1 online resource (v, 106 pages)
Bibliografía:Includes bibliographical references (pages 101-104 and index.
ISBN:1470449471
9781470449476
ISSN:1947-6221 ;
0065-9266