Measure and capacity of wandering domains in Gevrey near-integrable exact symplectic systems /
A wandering domain for a diffeomorphism \Psi of \mathbb A^n=T^*\mathbb T^n is an open connected set W such that \Psi ^k(W)\cap W=\emptyset for all k\in \mathbb Z^*. The authors endow \mathbb A^n with its usual exact symplectic structure. An integrable diffeomorphism, i.e., the time-one map \Phi ^h o...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, RI :
American Mathematical Society,
2019.
|
Colección: | Memoirs of the American Mathematical Society ;
no. 1235. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Chapter 1. Introduction Chapter 2. Presentation of the results Chapter 3. Stability theory for Gevrey near-integrable maps Chapter 4. A quantitative KAM result
- proof of Part (i) of Theorem D Chapter 5. Coupling devices, multi-dimensional periodic domains, wandering domains Appendix A. \texorpdfstring Algebraic operations in $\mathscr O_k$Algebraic operations in O Appendix B. Estimates on Gevrey maps Appendix C. Generating functions for exact symplectic $C^\infty $ maps Appendix D. Proof of Lemma 2.5 Acknowledgements