Cargando…

Measure and capacity of wandering domains in Gevrey near-integrable exact symplectic systems /

A wandering domain for a diffeomorphism \Psi of \mathbb A^n=T^*\mathbb T^n is an open connected set W such that \Psi ^k(W)\cap W=\emptyset for all k\in \mathbb Z^*. The authors endow \mathbb A^n with its usual exact symplectic structure. An integrable diffeomorphism, i.e., the time-one map \Phi ^h o...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Lazzarini, Laurent, 1971- (Autor), Marco, Jean-Pierre, 1960- (Autor), Sauzin, D., 1966- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, RI : American Mathematical Society, 2019.
Colección:Memoirs of the American Mathematical Society ; no. 1235.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Chapter 1. Introduction Chapter 2. Presentation of the results Chapter 3. Stability theory for Gevrey near-integrable maps Chapter 4. A quantitative KAM result
  • proof of Part (i) of Theorem D Chapter 5. Coupling devices, multi-dimensional periodic domains, wandering domains Appendix A. \texorpdfstring Algebraic operations in $\mathscr O_k$Algebraic operations in O Appendix B. Estimates on Gevrey maps Appendix C. Generating functions for exact symplectic $C^\infty $ maps Appendix D. Proof of Lemma 2.5 Acknowledgements