Measure and capacity of wandering domains in Gevrey near-integrable exact symplectic systems /
A wandering domain for a diffeomorphism \Psi of \mathbb A^n=T^*\mathbb T^n is an open connected set W such that \Psi ^k(W)\cap W=\emptyset for all k\in \mathbb Z^*. The authors endow \mathbb A^n with its usual exact symplectic structure. An integrable diffeomorphism, i.e., the time-one map \Phi ^h o...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, RI :
American Mathematical Society,
2019.
|
Colección: | Memoirs of the American Mathematical Society ;
no. 1235. |
Temas: | |
Acceso en línea: | Texto completo |
Sumario: | A wandering domain for a diffeomorphism \Psi of \mathbb A^n=T^*\mathbb T^n is an open connected set W such that \Psi ^k(W)\cap W=\emptyset for all k\in \mathbb Z^*. The authors endow \mathbb A^n with its usual exact symplectic structure. An integrable diffeomorphism, i.e., the time-one map \Phi ^h of a Hamiltonian h: \mathbb A^n\to \mathbb R which depends only on the action variables, has no nonempty wandering domains. The aim of this paper is to estimate the size (measure and Gromov capacity) of wandering domains in the case of an exact symplectic perturbation of \Phi ^h, in the analytic or. |
---|---|
Notas: | "January 2019, volume 257, number 1235 (fifth of 6 numbers)." |
Descripción Física: | 1 online resource (vi, 110 pages) |
Bibliografía: | Includes bibliographical references (pages 109-110). |
ISBN: | 1470449536 9781470449537 |
ISSN: | 1947-6221 ; 0065-9266 |