Cargando…

Python : Expert Machine Learning Systems and Intelligent Agents Using Python.

This Learning Path is your complete guide to quickly getting to grips with popular machine learning algorithms. You'll be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and learn how to use them in the best possible manner. Rangi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bonaccorso, Giuseppe
Otros Autores: Fandango, Armando, Shanmugamani, Rajalingappaa
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing Ltd, 2018.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_on1080997625
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 190105s2018 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d MERUC  |d YDX  |d CHVBK  |d OCLCQ  |d LOA  |d K6U  |d OCLCQ  |d OCLCL 
019 |a 1080585692 
020 |a 9781789951721 
020 |a 1789951720 
029 1 |a AU@  |b 000065067258 
029 1 |a CHNEW  |b 001039967 
029 1 |a CHVBK  |b 559036310 
035 |a (OCoLC)1080997625  |z (OCoLC)1080585692 
050 4 |a QA76.73.P98  |b .B663 2018 
082 0 4 |a 005.133  |2 23 
049 |a UAMI 
100 1 |a Bonaccorso, Giuseppe. 
245 1 0 |a Python :  |b Expert Machine Learning Systems and Intelligent Agents Using Python. 
260 |a Birmingham :  |b Packt Publishing Ltd,  |c 2018. 
300 |a 1 online resource (748 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Chapter 1: Machine Learning Model Fundamentals; Models and data; Zero-centering and whitening; Training and validation sets; Cross-validation; Features of a machine learning model; Capacity of a model; Vapnik-Chervonenkis capacity; Bias of an estimator; Underfitting; Variance of an estimator; Overfitting; The Cramér-Rao bound; Loss and cost functions; Examples of cost functions; Mean squared error; Huber cost function; Hinge cost function; Categorical cross-entropy; Regularization; Ridge; Lasso 
505 8 |a ElasticNetEarly stopping; Summary; Chapter 2: Introduction to Semi-Supervised Learning; Semi-supervised scenario; Transductive learning; Inductive learning; Semi-supervised assumptions; Smoothness assumption; Cluster assumption; Manifold assumption; Generative Gaussian mixtures; Example of a generative Gaussian mixture; Weighted log-likelihood; Contrastive pessimistic likelihood estimation; Example of contrastive pessimistic likelihood estimation; Semi-supervised Support Vector Machines (S3VM); Example of S3VM; Transductive Support Vector Machines (TSVM); Example of TSVM; Summary 
505 8 |a Chapter 3: Graph-Based Semi-Supervised LearningLabel propagation; Example of label propagation; Label propagation in Scikit-Learn; Label spreading; Example of label spreading; Label propagation based on Markov random walks; Example of label propagation based on Markov random walks; Manifold learning; Isomap; Example of Isomap; Locally linear embedding; Example of locally linear embedding; Laplacian Spectral Embedding; Example of Laplacian Spectral Embedding; t-SNE; Example of t-distributed stochastic neighbor embedding ; Summary; Chapter 4: Bayesian Networks and Hidden Markov Models 
505 8 |a Conditional probabilities and Bayes' theoremBayesian networks; Sampling from a Bayesian network; Direct sampling; Example of direct sampling; A gentle introduction to Markov chains; Gibbs sampling; Metropolis-Hastings sampling; Example of Metropolis-Hastings sampling; Sampling example using PyMC3; Hidden Markov Models (HMMs); Forward-backward algorithm; Forward phase; Backward phase; HMM parameter estimation; Example of HMM training with hmmlearn; Viterbi algorithm; Finding the most likely hidden state sequence with hmmlearn; Summary; Chapter 5: EM Algorithm and Applications 
505 8 |a MLE and MAP learningEM algorithm; An example of parameter estimation; Gaussian mixture; An example of Gaussian Mixtures using Scikit-Learn; Factor analysis; An example of factor analysis with Scikit-Learn; Principal Component Analysis; An example of PCA with Scikit-Learn; Independent component analysis; An example of FastICA with Scikit-Learn; Addendum to HMMs; Summary; Chapter 6: Hebbian Learning and Self-Organizing Maps; Hebb's rule; Analysis of the covariance rule; Example of covariance rule application; Weight vector stabilization and Oja's rule; Sanger's network 
500 |a Example of Sanger's network 
520 |a This Learning Path is your complete guide to quickly getting to grips with popular machine learning algorithms. You'll be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to ... 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Python. 
700 1 |a Fandango, Armando. 
700 1 |a Shanmugamani, Rajalingappaa. 
758 |i has work:  |a Python (Work)  |1 https://id.oclc.org/worldcat/entity/E39PCXmGTm4h9JYDpW6Dkj9TBP  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Bonaccorso, Giuseppe.  |t Python: Advanced Guide to Artificial Intelligence.  |d Birmingham : Packt Publishing Ltd, ©2018  |z 9781789957211 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5626921  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5626921 
938 |a YBP Library Services  |b YANK  |n 15914148 
994 |a 92  |b IZTAP