Cargando…

Linear Systems and Signals

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Olivier, J. C.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Norwood : Artech House, 2018.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro; Linear Systems and Signals: A Primer; Contents; Preface; Part I Time Domain Analysis; Chapter 1 Introduction to Signals and Systems; 1.1 Signals and Their Classification; 1.2 Discrete Time Signals; 1.2.1 Discrete Time Simulation of Analog Systems; 1.3 Periodic Signals; 1.4 Power and Energy in Signals; 1.4.1 Energy and Power Signal Examples; References; Chapter 2 Special Functions and a System Point of View; 2.1 The Unit Step or Heaviside Function; 2.2 Dirac's Delta Function d(t); 2.3 The Complex Exponential Function; 2.4 Kronecker Delta Function; 2.5 A System Point of View
  • 2.5.1 Systems With Memory and Causality2.5.2 Linear Systems; 2.5.3 Time Invariant Systems; 2.5.4 Stable Systems; 2.6 Summary; References; Chapter 3 The Continuous Time Convolution Theorem; 3.1 Introduction; 3.2 The System Step Response; 3.2.1 A System at Rest; 3.2.2 Step Response s(t); 3.3 The System Impulse Response h(t); 3.4 Continuous Time Convolution Theorem; 3.5 Summary; References; Chapter 4 Examples and Applications of the Convolution Theorem; 4.1 A First Example; 4.2 A Second Example: Convolving with an Impulse Train; 4.3 A Third Example: Cascaded Systems
  • 4.4 Systems and Linear Di˛erential Equations4.4.1 Example: A Second Order System; 4.5 Continuous Time LTI System Not at Rest; 4.6 Matched Filter Theorem; 4.6.1 Monte Carlo Computer Simulation; 4.7 Summary; References; Chapter 5 Discrete Time Convolution Theorem; 5.1 Discrete Time IR; 5.2 Discrete Time Convolution Theorem; 5.3 Example: Discrete Convolution; 5.4 Discrete Convolution Using a Matrix; 5.5 Discrete Time Di˛erence Equations; 5.5.1 Example: A Discrete Time Model of the RL Circuit; 5.5.2 Example: The Step Response of a RL Circuit; 5.5.3 Example: The Impulse Response of the RL Circuit
  • 5.5.4 Example: Application of the Convolution Theorem to Compute the Step Response5.6 Generalizing the Results: Discrete TimeSystem of Order N; 5.6.1 Constant-Coe˝cient Di˛erence Equation of Order N; 5.6.2 Recursive Formulation of the Response y[n]; 5.6.3 Computing the Impulse Response h[n]; 5.7 Summary; References; Chapter 6 Examples: Discrete Time Systems; 6.1 Example: Second Order System; 6.2 Numerical Analysis of a Discrete System; 6.3 Summary; References; Chapter 7 Discrete LTI Systems: State Space Analysis; 7.1 Eigenanalysis of a Discrete System
  • 7.2 State Space Representation and Analysis7.3 Solution of the State Space Equations; 7.3.1 Computing An; 7.4 Example: State Space Analysis; 7.4.1 Computing the Impulse Response h[n]; 7.5 Analyzing a Damped Pendulum; 7.5.1 Solution; 7.5.2 Solving the Di˛erential Equation Numerically; 7.5.3 Numerical Solution with Negligible Damping; 7.6 Summary; References; Part II System Analysis Based on Transformation Theory; Chapter 8 The Fourier Transform Applied to LTI Systems; 8.1 The Integral Transform; 8.2 The Fourier Transform; 8.3 Properties of the Fourier Transform; 8.3.1 Convolution