|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
EBOOKCENTRAL_on1080432390 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n|---||||| |
008 |
181229s2018 xx o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d YDX
|d OCLCQ
|d LOA
|d OCLCO
|d OCLCF
|d K6U
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 1080548252
|a 1104690673
|
020 |
|
|
|a 9781630816155
|
020 |
|
|
|a 1630816159
|
020 |
|
|
|z 1630816132
|
020 |
|
|
|z 9781630816131
|
029 |
1 |
|
|a AU@
|b 000069667307
|
035 |
|
|
|a (OCoLC)1080432390
|z (OCoLC)1080548252
|z (OCoLC)1104690673
|
050 |
|
4 |
|a TK5102.9
|b .O458 2019
|
082 |
0 |
4 |
|a 621.3822
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Olivier, J. C.
|
245 |
1 |
0 |
|a Linear Systems and Signals
|
260 |
|
|
|a Norwood :
|b Artech House,
|c 2018.
|
300 |
|
|
|a 1 online resource (304 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Intro; Linear Systems and Signals: A Primer; Contents; Preface; Part I Time Domain Analysis; Chapter 1 Introduction to Signals and Systems; 1.1 Signals and Their Classification; 1.2 Discrete Time Signals; 1.2.1 Discrete Time Simulation of Analog Systems; 1.3 Periodic Signals; 1.4 Power and Energy in Signals; 1.4.1 Energy and Power Signal Examples; References; Chapter 2 Special Functions and a System Point of View; 2.1 The Unit Step or Heaviside Function; 2.2 Dirac's Delta Function d(t); 2.3 The Complex Exponential Function; 2.4 Kronecker Delta Function; 2.5 A System Point of View
|
505 |
8 |
|
|a 2.5.1 Systems With Memory and Causality2.5.2 Linear Systems; 2.5.3 Time Invariant Systems; 2.5.4 Stable Systems; 2.6 Summary; References; Chapter 3 The Continuous Time Convolution Theorem; 3.1 Introduction; 3.2 The System Step Response; 3.2.1 A System at Rest; 3.2.2 Step Response s(t); 3.3 The System Impulse Response h(t); 3.4 Continuous Time Convolution Theorem; 3.5 Summary; References; Chapter 4 Examples and Applications of the Convolution Theorem; 4.1 A First Example; 4.2 A Second Example: Convolving with an Impulse Train; 4.3 A Third Example: Cascaded Systems
|
505 |
8 |
|
|a 4.4 Systems and Linear Di˛erential Equations4.4.1 Example: A Second Order System; 4.5 Continuous Time LTI System Not at Rest; 4.6 Matched Filter Theorem; 4.6.1 Monte Carlo Computer Simulation; 4.7 Summary; References; Chapter 5 Discrete Time Convolution Theorem; 5.1 Discrete Time IR; 5.2 Discrete Time Convolution Theorem; 5.3 Example: Discrete Convolution; 5.4 Discrete Convolution Using a Matrix; 5.5 Discrete Time Di˛erence Equations; 5.5.1 Example: A Discrete Time Model of the RL Circuit; 5.5.2 Example: The Step Response of a RL Circuit; 5.5.3 Example: The Impulse Response of the RL Circuit
|
505 |
8 |
|
|a 5.5.4 Example: Application of the Convolution Theorem to Compute the Step Response5.6 Generalizing the Results: Discrete TimeSystem of Order N; 5.6.1 Constant-Coe˝cient Di˛erence Equation of Order N; 5.6.2 Recursive Formulation of the Response y[n]; 5.6.3 Computing the Impulse Response h[n]; 5.7 Summary; References; Chapter 6 Examples: Discrete Time Systems; 6.1 Example: Second Order System; 6.2 Numerical Analysis of a Discrete System; 6.3 Summary; References; Chapter 7 Discrete LTI Systems: State Space Analysis; 7.1 Eigenanalysis of a Discrete System
|
505 |
8 |
|
|a 7.2 State Space Representation and Analysis7.3 Solution of the State Space Equations; 7.3.1 Computing An; 7.4 Example: State Space Analysis; 7.4.1 Computing the Impulse Response h[n]; 7.5 Analyzing a Damped Pendulum; 7.5.1 Solution; 7.5.2 Solving the Di˛erential Equation Numerically; 7.5.3 Numerical Solution with Negligible Damping; 7.6 Summary; References; Part II System Analysis Based on Transformation Theory; Chapter 8 The Fourier Transform Applied to LTI Systems; 8.1 The Integral Transform; 8.2 The Fourier Transform; 8.3 Properties of the Fourier Transform; 8.3.1 Convolution
|
500 |
|
|
|a 8.3.2 Time Shifting Theorem
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Signal processing
|x Mathematics.
|
650 |
|
0 |
|a Linear time invariant systems.
|
650 |
|
6 |
|a Traitement du signal
|x Mathématiques.
|
650 |
|
6 |
|a Systèmes linéaires invariants dans le temps.
|
650 |
|
7 |
|a Linear time invariant systems
|2 fast
|
650 |
|
7 |
|a Signal processing
|x Mathematics
|2 fast
|
776 |
0 |
8 |
|i Print version:
|a Olivier, J.C.
|t Linear Systems and Signals: a Primer.
|d Norwood : Artech House, ©2018
|z 9781630816131
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5625457
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL5625457
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 15913652
|
994 |
|
|
|a 92
|b IZTAP
|