Cargando…

Engineering agile big-data systems /

To be effective, data-intensive systems require extensive ongoing customisation to reflect changing user requirements, organisational policies, and the structure and interpretation of the data they hold. Manual customisation is expensive, time-consuming, and error-prone. In large complex systems, th...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Feeney, Kevin (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Aalborg : River Publishers, [2018]
Colección:River Publishers series in software engineering.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover; Half Title Page; RIVER PUBLISHERS SERIES IN SOFTWARE ENGINEERING; Title Page; Copyright Page; Contents; Preface; Acknowledgements; List of Contributors; List of Figures; List of Tables; List of Abbreviations; Chapter 1
  • Introduction; 1.1 State of the Art in Engineering Data-Intensive Systems; 1.1.1 The Challenge; 1.2 State of the Art in Semantics-Driven Software Engineering; 1.2.1 The Challenge; 1.3 State of the Art in Data Quality Engineering; 1.3.1 The Challenge; 1.4 About ALIGNED; 1.5 ALIGNED Partners; 1.5.1 Trinity College Dublin
  • 1.5.2 Oxford University
  • Department of Computer Science1.5.3 Oxford University
  • School of Anthropology and Museum Ethnography; 1.5.4 University of Leipzig
  • Agile Knowledge Engineering and Semantic Web (AKSW); 1.5.5 Semantic Web Company; 1.5.6 Wolters Kluwer Germany; 1.5.7 Adam Mickiewicz University in Poznań; 1.5.8 Wolters Kluwer Poland; 1.6 Structure; Chapter 2
  • ALIGNED Use Cases
  • Data and SoftwareEngineering Challenges; 2.1 Introduction; 2.2 The ALIGNED Use Cases; 2.2.1 Seshat: Global History Databank; 2.2.2 PoolParty Enterprise Application Demonstrator System; 2.2.3 DBpedia
  • 2.2.4 Jurion and Jurion IPG2.2.5 Health Data Management; 2.3 The ALIGNED Use Cases and Data Life Cycle. Major Challenges and Offered Solutions; 2.4 The ALIGNED Use Cases and Software Life Cycle. Major Challenges and Offered Solutions; 2.5 Conclusions; Chapter 3
  • Methodology; 3.1 Introduction; 3.2 Software and Data Engineering Life Cycles; 3.2.1 Software Engineering Life Cycle; 3.2.2 Data Engineering Life Cycle; 3.3 Software Development Processes; 3.3.1 Model-Driven Approaches; 3.3.2 Formal Techniques; 3.3.3 Test-Driven Development; 3.4 Integration Points and Harmonisation
  • 3.4.1 Integration Points3.4.2 Barriers to Harmonisation; 3.4.3 Methodology Requirements; 3.5 An ALIGNED Methodology; 3.5.1 A General Framework for Process Management; 3.5.2 An Iterative Methodology and Illustration; 3.6 Recommendations; 3.6.1 Sample Methodology; 3.7 Sample Synchronisation Point Activities; 3.7.1 Model Catalogue: Analysis and Search/Browse/Explore; 3.7.2 Model Catalogue: Design and Classify/Enrich; 3.7.3 Semantic Booster: Implementation and Store/Query; 3.7.4 Semantic Booster: Maintenance and Search/Browse/Explore; 3.8 Summary; 3.8.1 Related Work; 3.9 Conclusions
  • Chapter 4
  • ALIGNED MetaModel Overview4.1 Generic Metamodel; 4.1.1 Basic Approach; 4.1.2 Namespaces and URIs; 4.1.3 Expressivity of Vocabularies; 4.1.4 Reference Style for External Terms; 4.1.5 Links with W3C PROV; 4.2 ALIGNED Generic Metamodel; 4.2.1 Design Intent Ontology (DIO); 4.3 Software Engineering; 4.3.1 Software Life Cycle Ontology; 4.3.2 Software Implementation Process Ontology (SIP); 4.4 Data Engineering; 4.4.1 Data Life Cycle Ontology; 4.5 DBpedia DataID (DataID); 4.6 Unified Quality Reports; 4.6.1 Reasoning Violation Ontology (RVO) Overview; 4.6.2 W3C SHACL Reporting Vocabulary