Rad-hard semiconductor memories /
Rad-hard Semiconductor Memories is intended for researchers and professionals interested in understanding how to design and make a preliminary evaluation of rad-hard semiconductor memories, making leverage on standard CMOS manufacturing processes available from different silicon foundries and using...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Gistrup, Denmark :
River Publishers,
[2018]
|
Colección: | River Publishers series in electronic materials and devices.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Preface xiii
- Acknowledgements xv
- List of Contributors xvii
- List of Figures xix
- List of Tables xxxvii
- List of Abbreviations xxxix
- 1 Space Radiation Effects in Electronics 1 Luigi Dilillo, Alexandre Bosser, Arto Javanainen and Ari Virtanen 1.1 Space Radiation Environment 2
- 1.1.1 The Sun 2
- 1.1.2 The Sunspot Cycle 2
- 1.1.3 Solar Flares and Coronal Mass Ejections 3
- 1.1.4 Trapped Particles
- Van Allen Belts 4
- 1.1.5 South Atlantic Anomaly 5
- 1.1.6 Galactic Cosmic Rays 6
- 1.1.7 Space Weather 7
- 1.1.8 Atmospheric and Ground-Level Radiation Environments 8
- 1.1.9 Cosmic Rays 9
- 1.1.10 Radionuclides in the Soil 10
- 1.1.11 Thermal Neutrons 11
- 1.1.12 Artificial Radiation Sources 12
- 1.2 Radiation Effect in Materials and Devices 12
- 1.2.1 Energetic Charged Particles and Matter 12
- 1.2.2 Stopping Nomenclature 14
- 1.2.3 General Theory for Electronic Stopping 14
- 1.2.4 Stopping Theories and Semi-Empirical Models 15
- 1.2.5 Nuclear Stopping Force 16
- 1.2.6 Ion-induced Nuclear Reactions 17
- 1.3 Radiation Effects in Semiconductors 18
- 1.3.1 Generation of Electron-Hole Pairs 18
- 1.3.2 Nuclear Reactions 19
- 1.3.3 Linear Energy Transfer vs. Electronic Stopping Force 21
- 1.3.4 Spatially Restricted LET 22
- 1.3.5 Energy Loss Straggling 23
- 1.3.6 Applicability of LET 25
- 1.3.7 Prediction Tools for Stopping Force 26
- 1.3.8 Cumulative Effect: Total Ionizing Dose and Displacement Damage 28
- 1.3.9 Single Event Effects 28
- 1.3.10 Soft Errors 29
- 1.3.11 Hard Errors 30
- 1.4 Effect of Radiation on Memory Devices 31
- 1.4.1 Structure of a Memory 31
- 1.4.2 Classification and Fault Mechanisms in Memories 35
- 1.4.3 Memory Accelerated Tests 38
- 1.4.4 Test Methods 39
- 1.4.5 Static Mode Testing 40
- 1.4.6 Dynamic Mode Testing 41
- 1.5 Radiation Hardness Assurance Testing 43
- 1.5.1 Beam Requirements 46
- 1.5.2 TID Tests 47
- 1.5.3 TNID Tests 48
- 1.5.4 SEE Tests 48
- 1.5.5 Sample Preparation 48
- 1.5.6 TID Tests 48.
- 1.5.7 SEE Tests 49
- 1.5.8 Radiation Facilities 49
- 1.5.9 ESA European Component Irradiation Facilities (ECIF) 49
- 1.5.10 Other Outstanding European Facilities 50
- 1.5.11 Other Outstanding Facilities in the World 51
- 1.5.12 Accelerated Test for Memories 51
- 1.5.13 Memory Test Setup 52
- 1.5.14 Notes on Test Result Analysis 54
- 1.6 Conclusion 55
- References 56
- 2 RHBD Techniques for Memories 65 Cristiano Calligaro 2.1 Effect of HEPs on Semiconductor Devices 65
- 2.2 Cumulative Effect: TID 68
- 2.3 Single Event Latch-up: SEL 74
- 2.4 Single Event Upset: SEU 76
- 2.5 From SET to SEU/SEFI/MBU: When a Disturbance Becomes an Error 79
- 2.6 Radiation Hardening By Design (RHBD) 83
- 2.7 RHBD at Architectural Level 87
- 2.8 RHBD at Circuit Level 91
- 2.9 RHBD at Layout Level 95
- 2.10 Conclusion 100
- References 101
- 3 Rad-hard SRAMs 103 Cristiano Calligaro 3.1 SRAM Foundations: Single Port and Multiple Port 103
- 3.2 Synchronous or Asynchronous? 118
- 3.3 SRAM Architectures 124
- 3.4 Embedded SRAMs 132
- 3.5 SRAMs' Building Blocks ... Rad-hard of Course 136
- 3.5.1 Input Buffers and ATDs 136
- 3.5.2 DEMUXs 139
- 3.5.3 Sensing 140
- 3.6 ECC Foundations: The Hamming Code 143
- References 149
- 4 One-Time Programmable Memories for Harsh Environments 151 Umberto Gatti 4.1 Introduction 151
- 4.1.1 NVM Technology Overview 152
- 4.1.2 OTP Application in Harsh Environments 154
- 4.2 OTP Memories for Standard CMOS Technologies 157
- 4.2.1 Principle of Operation 158
- 4.2.2 CMOS OTP Based on Anti-Fuse 161
- 4.2.3 Characteristics and Limits 166
- 4.3 Rad-hard CMOS OTP 169
- 4.3.1 Critical Features 169
- 4.3.2 State of the Art 174
- 4.3.3 RHBD Mitigation: Architectures and Layout 176
- 4.4 Conclusion 186
- References 186
- 5 Rad-hard Flash Memories 191 Anna Arbat Casas 5.1 Introduction 191
- 5.1.1 Non-volatile Memories Overview 192
- 5.1.2 Flash NVM: Principle of Operation 194
- 5.1.3 Flash NVM Standard Architecture Overview: NOR vs. NAND 195.
- 5.1.3.1 NOR-Flash 195
- 5.1.3.2 NAND-Flash 197
- 5.1.3.3 Summary 198
- 5.2 Radiation-hard Flash Architecture Study 198
- 5.2.1 Critical Features: Introduction of the Differential Cell Architecture 199
- 5.2.2 Program
- Erase Circuit Analysis 202
- 5.2.3 Read & Verify Circuit Analysis 207
- 5.2.4 General Architecture Considerations and Internal Bit Structure 211
- 5.2.5 Case Study: FP7 SkyFlash Project on Rad-hard Non-Volatile Memories 213
- 5.3 Side-Circuits 218
- 5.3.1 Charge Pump Analysis 219
- 5.3.2 Charge Pump 221
- 5.3.3 Pad-ring Requirements 222
- 5.4 Conclusion 223
- References 223
- 6 Radiation Hardness of Foundry NVM Technologies 227 Evgeny Pikhay, Cristiano Calligaro and Yakov Roizin 6.1 Introduction 228
- 6.2 Physical Phenomena in CMOS Devices Under Irradiation and Their Control 230
- 6.3 Radiation Hardness of CMOS Logic Memories 234
- 6.3.1 Single-Poly EEPROMs 234
- 6.3.2 GOX Anti-Fuses 236
- 6.3.3 Radioisotope-Powered Memory 238
- 6.3.4 Silicon Nitride-Based Memories 239
- 6.4 On the Chip Tools for TID Radiation Effects Control 247
- 6.4.1 MOS Structures for Monitoring of Radiation-Induced Charges in Dielectrics 248
- 6.4.2 FG Devices for Monitoring the TID 252
- 6.4.2.1 Introduction 252
- 6.4.2.2 C-Sensor operation principle 256
- 6.4.2.3 Implementation of C-Sensor principle in CMOS platform 258
- 6.4.2.4 Detecting different types of ionizing radiation using C-Sensor 259
- 6.5 Conclusion 264
- References 264
- 7 Rad-hard Resistive Memories 269 Cristiano Calligaro 7.1 ReRAM Cell 269
- 7.2 ReRAM Array 271
- 7.3 ReRAM Architecture 277
- 7.4 ReRAM Periphery 281
- 7.5 Forming, Setting and Resetting a Resistive Memory 292
- 7.6 Resistive OTPs (ROTPs): The ReRAM Pioneers 302
- References 305
- 8 Technologies for Rad-hard Resistive Memories 309 Christian Wenger 8.1 Non-Volatile Memory Technologies 309
- 8.1.1 State-of-the-Art NVMs
- Flash Memory 311
- 8.1.2 The Way-out Over Emerging Technologies 312
- 8.1.3 ReRAM Technology 313.
- 8.2 Reliability Issues of 1T-1R-based HfO2 ReRAM Arrays 315
- 8.2.1 Retention Results on Amorphous and Polycrystalline Arrays 322
- 8.2.2 Set Evolution 322
- 8.2.3 Reset Evolution 324
- 8.2.4 Impact of Temperature on Conduction Mechanisms and Switching Parameters in HfO2-based 1T-1R ReRAM Devices 327
- 8.3 CMOS Integration of Resistive Memory Cells 330
- 8.4 Conclusions 337
- References 338
- 9 New Generation of NVMs Based on Graphene-related Nanomaterials 341 Paolo Bondavalli 9.1 Introduction 342
- 9.2 Graphene-based Non-volatile Memories 343
- 9.2.1 Graphene and Graphitic Layers 344
- 9.2.2 Non-volatile Resistive Memories Based on GO and R-GO Oxide Layers 348
- 9.3 Other Approaches to Achieve Non-volatile Memories Using Graphitic Layers 354
- 9.3.1 Graphitic-based Non-volatile Memory Using a Transistor Configuration 355
- 9.3.2 Non-volatile Flash-type Memories Based on Graphene/Multi-layered Graphene 357
- 9.4 Conclusions 360
- References 361
- Index 369
- About the Editors 373.