Cargando…

Rad-hard semiconductor memories /

Rad-hard Semiconductor Memories is intended for researchers and professionals interested in understanding how to design and make a preliminary evaluation of rad-hard semiconductor memories, making leverage on standard CMOS manufacturing processes available from different silicon foundries and using...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Calligaro, Cristiano (Editor ), Gatti, Umberto (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Gistrup, Denmark : River Publishers, [2018]
Colección:River Publishers series in electronic materials and devices.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Preface xiii
  • Acknowledgements xv
  • List of Contributors xvii
  • List of Figures xix
  • List of Tables xxxvii
  • List of Abbreviations xxxix
  • 1 Space Radiation Effects in Electronics 1 Luigi Dilillo, Alexandre Bosser, Arto Javanainen and Ari Virtanen 1.1 Space Radiation Environment 2
  • 1.1.1 The Sun 2
  • 1.1.2 The Sunspot Cycle 2
  • 1.1.3 Solar Flares and Coronal Mass Ejections 3
  • 1.1.4 Trapped Particles
  • Van Allen Belts 4
  • 1.1.5 South Atlantic Anomaly 5
  • 1.1.6 Galactic Cosmic Rays 6
  • 1.1.7 Space Weather 7
  • 1.1.8 Atmospheric and Ground-Level Radiation Environments 8
  • 1.1.9 Cosmic Rays 9
  • 1.1.10 Radionuclides in the Soil 10
  • 1.1.11 Thermal Neutrons 11
  • 1.1.12 Artificial Radiation Sources 12
  • 1.2 Radiation Effect in Materials and Devices 12
  • 1.2.1 Energetic Charged Particles and Matter 12
  • 1.2.2 Stopping Nomenclature 14
  • 1.2.3 General Theory for Electronic Stopping 14
  • 1.2.4 Stopping Theories and Semi-Empirical Models 15
  • 1.2.5 Nuclear Stopping Force 16
  • 1.2.6 Ion-induced Nuclear Reactions 17
  • 1.3 Radiation Effects in Semiconductors 18
  • 1.3.1 Generation of Electron-Hole Pairs 18
  • 1.3.2 Nuclear Reactions 19
  • 1.3.3 Linear Energy Transfer vs. Electronic Stopping Force 21
  • 1.3.4 Spatially Restricted LET 22
  • 1.3.5 Energy Loss Straggling 23
  • 1.3.6 Applicability of LET 25
  • 1.3.7 Prediction Tools for Stopping Force 26
  • 1.3.8 Cumulative Effect: Total Ionizing Dose and Displacement Damage 28
  • 1.3.9 Single Event Effects 28
  • 1.3.10 Soft Errors 29
  • 1.3.11 Hard Errors 30
  • 1.4 Effect of Radiation on Memory Devices 31
  • 1.4.1 Structure of a Memory 31
  • 1.4.2 Classification and Fault Mechanisms in Memories 35
  • 1.4.3 Memory Accelerated Tests 38
  • 1.4.4 Test Methods 39
  • 1.4.5 Static Mode Testing 40
  • 1.4.6 Dynamic Mode Testing 41
  • 1.5 Radiation Hardness Assurance Testing 43
  • 1.5.1 Beam Requirements 46
  • 1.5.2 TID Tests 47
  • 1.5.3 TNID Tests 48
  • 1.5.4 SEE Tests 48
  • 1.5.5 Sample Preparation 48
  • 1.5.6 TID Tests 48.
  • 1.5.7 SEE Tests 49
  • 1.5.8 Radiation Facilities 49
  • 1.5.9 ESA European Component Irradiation Facilities (ECIF) 49
  • 1.5.10 Other Outstanding European Facilities 50
  • 1.5.11 Other Outstanding Facilities in the World 51
  • 1.5.12 Accelerated Test for Memories 51
  • 1.5.13 Memory Test Setup 52
  • 1.5.14 Notes on Test Result Analysis 54
  • 1.6 Conclusion 55
  • References 56
  • 2 RHBD Techniques for Memories 65 Cristiano Calligaro 2.1 Effect of HEPs on Semiconductor Devices 65
  • 2.2 Cumulative Effect: TID 68
  • 2.3 Single Event Latch-up: SEL 74
  • 2.4 Single Event Upset: SEU 76
  • 2.5 From SET to SEU/SEFI/MBU: When a Disturbance Becomes an Error 79
  • 2.6 Radiation Hardening By Design (RHBD) 83
  • 2.7 RHBD at Architectural Level 87
  • 2.8 RHBD at Circuit Level 91
  • 2.9 RHBD at Layout Level 95
  • 2.10 Conclusion 100
  • References 101
  • 3 Rad-hard SRAMs 103 Cristiano Calligaro 3.1 SRAM Foundations: Single Port and Multiple Port 103
  • 3.2 Synchronous or Asynchronous? 118
  • 3.3 SRAM Architectures 124
  • 3.4 Embedded SRAMs 132
  • 3.5 SRAMs' Building Blocks ... Rad-hard of Course 136
  • 3.5.1 Input Buffers and ATDs 136
  • 3.5.2 DEMUXs 139
  • 3.5.3 Sensing 140
  • 3.6 ECC Foundations: The Hamming Code 143
  • References 149
  • 4 One-Time Programmable Memories for Harsh Environments 151 Umberto Gatti 4.1 Introduction 151
  • 4.1.1 NVM Technology Overview 152
  • 4.1.2 OTP Application in Harsh Environments 154
  • 4.2 OTP Memories for Standard CMOS Technologies 157
  • 4.2.1 Principle of Operation 158
  • 4.2.2 CMOS OTP Based on Anti-Fuse 161
  • 4.2.3 Characteristics and Limits 166
  • 4.3 Rad-hard CMOS OTP 169
  • 4.3.1 Critical Features 169
  • 4.3.2 State of the Art 174
  • 4.3.3 RHBD Mitigation: Architectures and Layout 176
  • 4.4 Conclusion 186
  • References 186
  • 5 Rad-hard Flash Memories 191 Anna Arbat Casas 5.1 Introduction 191
  • 5.1.1 Non-volatile Memories Overview 192
  • 5.1.2 Flash NVM: Principle of Operation 194
  • 5.1.3 Flash NVM Standard Architecture Overview: NOR vs. NAND 195.
  • 5.1.3.1 NOR-Flash 195
  • 5.1.3.2 NAND-Flash 197
  • 5.1.3.3 Summary 198
  • 5.2 Radiation-hard Flash Architecture Study 198
  • 5.2.1 Critical Features: Introduction of the Differential Cell Architecture 199
  • 5.2.2 Program
  • Erase Circuit Analysis 202
  • 5.2.3 Read & Verify Circuit Analysis 207
  • 5.2.4 General Architecture Considerations and Internal Bit Structure 211
  • 5.2.5 Case Study: FP7 SkyFlash Project on Rad-hard Non-Volatile Memories 213
  • 5.3 Side-Circuits 218
  • 5.3.1 Charge Pump Analysis 219
  • 5.3.2 Charge Pump 221
  • 5.3.3 Pad-ring Requirements 222
  • 5.4 Conclusion 223
  • References 223
  • 6 Radiation Hardness of Foundry NVM Technologies 227 Evgeny Pikhay, Cristiano Calligaro and Yakov Roizin 6.1 Introduction 228
  • 6.2 Physical Phenomena in CMOS Devices Under Irradiation and Their Control 230
  • 6.3 Radiation Hardness of CMOS Logic Memories 234
  • 6.3.1 Single-Poly EEPROMs 234
  • 6.3.2 GOX Anti-Fuses 236
  • 6.3.3 Radioisotope-Powered Memory 238
  • 6.3.4 Silicon Nitride-Based Memories 239
  • 6.4 On the Chip Tools for TID Radiation Effects Control 247
  • 6.4.1 MOS Structures for Monitoring of Radiation-Induced Charges in Dielectrics 248
  • 6.4.2 FG Devices for Monitoring the TID 252
  • 6.4.2.1 Introduction 252
  • 6.4.2.2 C-Sensor operation principle 256
  • 6.4.2.3 Implementation of C-Sensor principle in CMOS platform 258
  • 6.4.2.4 Detecting different types of ionizing radiation using C-Sensor 259
  • 6.5 Conclusion 264
  • References 264
  • 7 Rad-hard Resistive Memories 269 Cristiano Calligaro 7.1 ReRAM Cell 269
  • 7.2 ReRAM Array 271
  • 7.3 ReRAM Architecture 277
  • 7.4 ReRAM Periphery 281
  • 7.5 Forming, Setting and Resetting a Resistive Memory 292
  • 7.6 Resistive OTPs (ROTPs): The ReRAM Pioneers 302
  • References 305
  • 8 Technologies for Rad-hard Resistive Memories 309 Christian Wenger 8.1 Non-Volatile Memory Technologies 309
  • 8.1.1 State-of-the-Art NVMs
  • Flash Memory 311
  • 8.1.2 The Way-out Over Emerging Technologies 312
  • 8.1.3 ReRAM Technology 313.
  • 8.2 Reliability Issues of 1T-1R-based HfO2 ReRAM Arrays 315
  • 8.2.1 Retention Results on Amorphous and Polycrystalline Arrays 322
  • 8.2.2 Set Evolution 322
  • 8.2.3 Reset Evolution 324
  • 8.2.4 Impact of Temperature on Conduction Mechanisms and Switching Parameters in HfO2-based 1T-1R ReRAM Devices 327
  • 8.3 CMOS Integration of Resistive Memory Cells 330
  • 8.4 Conclusions 337
  • References 338
  • 9 New Generation of NVMs Based on Graphene-related Nanomaterials 341 Paolo Bondavalli 9.1 Introduction 342
  • 9.2 Graphene-based Non-volatile Memories 343
  • 9.2.1 Graphene and Graphitic Layers 344
  • 9.2.2 Non-volatile Resistive Memories Based on GO and R-GO Oxide Layers 348
  • 9.3 Other Approaches to Achieve Non-volatile Memories Using Graphitic Layers 354
  • 9.3.1 Graphitic-based Non-volatile Memory Using a Transistor Configuration 355
  • 9.3.2 Non-volatile Flash-type Memories Based on Graphene/Multi-layered Graphene 357
  • 9.4 Conclusions 360
  • References 361
  • Index 369
  • About the Editors 373.