Cargando…

Recurrent Neural Networks with Python Quick Start Guide : Sequential Learning and Language Modeling with TensorFlow.

Developers struggle to find an easy to follow learning resource for implementing Recurrent Neural Network(RNN) models. RNNs are the state-of-the-art model in deep learning for dealing with sequential data. From language translation to generating captions for an image, RNNs are used to continuously i...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kostadinov, Simeon
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing Ltd, 2018.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_on1078996135
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 181215s2018 enk ob 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d YDX  |d MERUC  |d UKAHL  |d UKMGB  |d OCLCO  |d OCLCQ  |d OCLCO  |d K6U  |d OCLCQ  |d OCLCO  |d OCLCL 
015 |a GBB9B0955  |2 bnb 
016 7 |a 019176851  |2 Uk 
019 |a 1078889053 
020 |a 9781789133660 
020 |a 1789133661 
020 |z 1789132339 
020 |z 9781789132335 
029 1 |a AU@  |b 000065067263 
029 1 |a UKMGB  |b 019176851 
035 |a (OCoLC)1078996135  |z (OCoLC)1078889053 
037 |a 9781789133660  |b Packt Publishing 
050 4 |a QA76.87 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.32  |2 23 
049 |a UAMI 
100 1 |a Kostadinov, Simeon. 
245 1 0 |a Recurrent Neural Networks with Python Quick Start Guide :  |b Sequential Learning and Language Modeling with TensorFlow. 
260 |a Birmingham :  |b Packt Publishing Ltd,  |c 2018. 
300 |a 1 online resource (115 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Chapter 1: Introducing Recurrent Neural Networks; What is an RNN?; Comparing recurrent neural networks with similar models; Hidden Markov model; Recurrent neural network; Understanding how recurrent neural networks work; Basic neural network overview; Obtaining data; Encoding the data; Building the architecture ; Training the model; Evaluating the model; Key problems with the standard recurrent neural network model; Summary; External links; Chapter 2: Building Your First RNN with TensorFlow 
505 8 |a What are you going to build?Introduction to TensorFlow; Graph-based execution; Eager execution; Coding the recurrent neural network; Generating data; Building the TensorFlow graph; Training the RNN; Evaluating the predictions; Summary; External links; Chapter 3: Generating Your Own Book Chapter; Why use the GRU network?; Generating your book chapter; Obtaining the book text; Encoding the text; Building the TensorFlow graph; Training the network; Generating your new text; Summary; External links; Chapter 4: Creating a Spanish-to-English Translator; Understanding the translation model 
505 8 |a What is an LSTM network?Understanding the sequence-to-sequence network with attention; Building the Spanish-to-English translator; Preparing the data; Constructing the TensorFlow graph; Training the model; Predicting the translation; Evaluating the final results; Summary; External links; Chapter 5: Building Your Personal Assistant; What are we building?; Preparing the data; Creating the chatbot network; Training the chatbot; Building a conversation; Summary; External links; Chapter 6: Improving Your RNN Performance; Improving your RNN model; Improving performance with data; Selecting data 
505 8 |a Processing dataTransforming data; Improving performance with tuning; Grid search; Random search ; Hand-tuning; Bayesian optimization; Tree-structured Parzen Estimators (TPE); Optimizing the TensorFlow library; Data processing; Improving data loading; Improving data transformation; Performing the training; Optimizing gradients; Summary; External links; Other Books You May Enjoy; Index 
520 |a Developers struggle to find an easy to follow learning resource for implementing Recurrent Neural Network(RNN) models. RNNs are the state-of-the-art model in deep learning for dealing with sequential data. From language translation to generating captions for an image, RNNs are used to continuously improve the results. This book will teach you ... 
504 |a Includes bibliographical references. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Neural networks (Computer science) 
650 0 |a Machine learning. 
650 0 |a Python (Computer program language) 
650 6 |a Réseaux neuronaux (Informatique) 
650 6 |a Apprentissage automatique. 
650 6 |a Python (Langage de programmation) 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Machine learning  |2 fast 
650 7 |a Neural networks (Computer science)  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
758 |i has work:  |a Recurrent neural networks with Python Quick Start Guide (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGJBJk96GkQ8gKr3M4CjVK  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Kostadinov, Simeon.  |t Recurrent Neural Networks with Python Quick Start Guide : Sequential Learning and Language Modeling with TensorFlow.  |d Birmingham : Packt Publishing Ltd, ©2018  |z 9781789132335 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5609746  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH35657821 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5609746 
938 |a YBP Library Services  |b YANK  |n 15888305 
994 |a 92  |b IZTAP