Cargando…

Natural Language Processing with Python Quick Start Guide : Going from a Python Developer to an Effective Natural Language Processing Engineer.

NLP in Python is among the most sought-after skills among data scientists. With code and relevant case studies, this book will show how you can use industry grade tools to implement NLP programs capable of learning from relevant data. We will explore many modern methods ranging from spaCy to word ve...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kasliwal, Nirant
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing Ltd, 2018.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_on1078994058
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 181215s2018 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d YDX  |d MERUC  |d UKAHL  |d OCLCQ  |d VT2  |d NLW  |d UKMGB  |d OCLCO  |d REDDC  |d K6U  |d OCLCQ  |d N$T  |d OCLCO  |d OCLCL  |d TMA  |d OCLCQ 
015 |a GBC213003  |2 bnb 
016 7 |a 019176850  |2 Uk 
019 |a 1078894153 
020 |a 1788994108 
020 |a 9781788994101  |q (electronic bk.) 
020 |z 1789130387 
020 |z 9781789130386 
029 1 |a AU@  |b 000065066936 
029 1 |a UKMGB  |b 019176850 
029 1 |a AU@  |b 000070516185 
035 |a (OCoLC)1078994058  |z (OCoLC)1078894153 
037 |a 9781788994101  |b Packt Publishing 
050 4 |a QA76.73.P98  |b .K375 2018 
082 0 4 |a 006.35  |2 23 
049 |a UAMI 
100 1 |a Kasliwal, Nirant. 
245 1 0 |a Natural Language Processing with Python Quick Start Guide :  |b Going from a Python Developer to an Effective Natural Language Processing Engineer. 
260 |a Birmingham :  |b Packt Publishing Ltd,  |c 2018. 
300 |a 1 online resource (177 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Chapter 1: Getting Started with Text Classification; What is NLP?; Why learn about NLP?; You have a problem in mind; Technical achievement; Do something new; Is this book for you?; NLP workflow template; Understanding the problem; Understanding and preparing the data; Quick wins -- proof of concept; Iterating and improving; Algorithms; Pre-processing; Evaluation and deployment; Evaluation; Deployment; Example -- text classification workflow; Launchpad -- programming environment setup 
505 8 |a Text classification in 30 lines of codeGetting the data; Text to numbers; Machine learning; Summary; Chapter 2: Tidying your Text; Bread and butter -- most common tasks; Loading the data; Exploring the loaded data; Tokenization; Intuitive -- split by whitespace; The hack -- splitting by word extraction; Introducing Regexes; spaCy for tokenization; How does the spaCy tokenizer work?; Sentence tokenization; Stop words removal and case change; Stemming and lemmatization; spaCy for lemmatization; -PRON-; Case-insensitive; Conversion -- meeting to meet; spaCy compared with NLTK and CoreNLP 
505 8 |a Correcting spellingFuzzyWuzzy; Jellyfish; Phonetic word similarity; What is a phonetic encoding?; Runtime complexity; Cleaning a corpus with FlashText; Summary; Chapter 3: Leveraging Linguistics; Linguistics and NLP; Getting started; Introducing textacy; Redacting names with named entity recognition; Entity types; Automatic question generation; Part-of-speech tagging; Creating a ruleset; Question and answer generation using dependency parsing; Visualizing the relationship; Introducing textacy; Leveling up -- question and answer; Putting it together and the end; Summary 
505 8 |a Chapter 4: Text Representations -- Words to NumbersVectorizing a specific dataset; Word representations; How do we use pre-trained embeddings?; KeyedVectors API; What is missing in both word2vec and GloVe?; How do we handle Out Of Vocabulary words?; Getting the dataset; Training fastText embedddings; Training word2vec embeddings; fastText versus word2vec; Document embedding; Understanding the doc2vec API; Negative sampling; Hierarchical softmax; Data exploration and model evaluation; Summary; Chapter 5: Modern Methods for Classification; Machine learning for text 
505 8 |a Sentiment analysis as text classification Simple classifiers; Optimizing simple classifiers; Ensemble methods; Getting the data; Reading data; Simple classifiers; Logistic regression; Removing stop words; Increasing ngram range; Multinomial Naive Bayes; Adding TF-IDF; Removing stop words; Changing fit prior to false; Support vector machines; Decision trees; Random forest classifier; Extra trees classifier; Optimizing our classifiers; Parameter tuning using RandomizedSearch; GridSearch; Ensembling models; Voting ensembles -- Simple majority (aka hard voting); Voting ensembles -- soft voting 
500 |a Weighted classifiers 
520 |a NLP in Python is among the most sought-after skills among data scientists. With code and relevant case studies, this book will show how you can use industry grade tools to implement NLP programs capable of learning from relevant data. We will explore many modern methods ranging from spaCy to word vectors that have reinvented NLP. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Natural language processing (Computer science) 
650 0 |a Python (Computer program language) 
650 2 |a Natural Language Processing 
650 4 |a Python (Computer Program Language) 
650 4 |a Computer Software  |x Testing. 
650 4 |a Debugging In Computer Science. 
650 4 |a Computers  |x Languages  |x Python. 
650 4 |a Computers  |x Software Development & Engineering  |x Quality Assurance & Testing. 
650 6 |a Traitement automatique des langues naturelles. 
650 6 |a Python (Langage de programmation) 
650 7 |a Programming & scripting languages: general.  |2 bicssc 
650 7 |a Artificial intelligence.  |2 bicssc 
650 7 |a Natural language & machine translation.  |2 bicssc 
650 7 |a Computers  |x Intelligence (AI) & Semantics.  |2 bisacsh 
650 7 |a Computers  |x Programming Languages  |x Python.  |2 bisacsh 
650 7 |a Computers  |x Natural Language Processing.  |2 bisacsh 
650 7 |a Natural language processing (Computer science)  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
758 |i has work:  |a Natural Language Processing with Python Quick Start Guide (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCYM7DQWctmVcj3mD4K8JwC  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Kasliwal, Nirant.  |t Natural Language Processing with Python Quick Start Guide : Going from a Python Developer to an Effective Natural Language Processing Engineer.  |d Birmingham : Packt Publishing Ltd, ©2018  |z 9781789130386 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5609742  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH35657765 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5609742 
938 |a YBP Library Services  |b YANK  |n 15888301 
938 |a EBSCOhost  |b EBSC  |n 1950559 
994 |a 92  |b IZTAP