|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
EBOOKCENTRAL_on1078571906 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n|---||||| |
008 |
181208s2018 xx o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d YDX
|d MERUC
|d OTZ
|d OCLCO
|d OCLCQ
|d SFB
|d UKAHL
|d K6U
|d OCLCO
|d OCLCQ
|d OCLCL
|
019 |
|
|
|a 1078567741
|
020 |
|
|
|a 9781787435278
|
020 |
|
|
|a 178743527X
|
020 |
|
|
|z 1787435288
|
020 |
|
|
|z 9781787435285
|
029 |
1 |
|
|a AU@
|b 000067268526
|
035 |
|
|
|a (OCoLC)1078571906
|z (OCoLC)1078567741
|
050 |
|
4 |
|a HD9502-9502.5
|
080 |
|
|
|a 338
|
082 |
0 |
4 |
|a 511.3
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Levy, George.
|
245 |
1 |
0 |
|a Energy Power Risk :
|b Derivatives, Computation and Optimization.
|
260 |
|
|
|a Bingley :
|b Emerald Publishing Limited,
|c 2018.
|
300 |
|
|
|a 1 online resource (345 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front Cover; Energy Power Risk: Derivatives, Computation and Optimization; Copyright Page; Contents; List of Figures; List of Tables; Notations; Preface; Chapter 1 Overview; Chapter 2 Brownian Motion and Stochastic Processes; 2.1. Brownian Motion; 2.1.1. The Properties of Brownian Motion; 2.1.2. A Brownian Model of Asset Price Movements; 2.2. Ito's Formula (or Lemma); 2.3. Girsanov's Theorem; 2.4. Ito's Lemma for Multi-Asset Geometric Brownian Motion; 2.5. Ito Product and Quotient Rules in Two Dimensions; 2.6. Ito Product in n Dimensions; 2.7. The Brownian Bridge; 2.9. Poisson Process
|
505 |
8 |
|
|a 2.10. Stochastic Integrals2.10.1. Fubini's Theorem; 2.11. Selected Problems; Chapter 3 Fundamental Power Price Model; 3.1. A Power Stack Model; 3.2. ModelingWind and Solar Generation; 3.3. Simulated Half Hourly Power Price; 4 Single Asset European Options; 4.1. Introduction; 4.2. Pricing Derivatives Using a Martingale Measure; 4.3. Put -- Call Parity; 4.3.1. Continuous Dividends; 4.4. Vanilla Options and The Black -- Scholes Model; 4.4.1. The Option Pricing Partial Differential Equation; 4.4.2. The Multi-Asset Option Pricing Partial Differential Equation; 4.4.3. The Black-Scholes Formula
|
505 |
8 |
|
|a 4.4.3.1. The Inclusion of Continuous Dividends4.4.3.2. The Greeks; 4.4.4. Historical and Implied Volatility; 4.4.4.1. Historical Volatility; 4.4.4.2. Implied Volatility; 4.4.5. Microsoft Excel; 4.5. One-factor Spot Model; 4.6. One Factor Forward Curve Model; 4.6.1. Introduction; 4.6.2. The Spot Price Process; 4.6.3. The Relationship Between the Forward Price and the Spot Price; 4.6.4. Option Pricing Formula; 4.7. Two- factor Spot Model; 4.8. Multifactor Forward Curve Model; 4.9. Johnson Distribution; 4.9.1. Option Pricing Formula; 4.9.2. Parameter Estimation; 4.10. Weibull Distribution
|
505 |
8 |
|
|a 4.10.1. StandardWeibull Distribution4.10.2. Doubly TruncatedWeibull Distribution; 4.11. Merton Jump Diffusion Model; 4.11.1. Monte Carlo Simulation; 4.11.2. Analytic Option Pricing Formulae; Chapter 5 Single Asset American Style Options; 5.1. Introduction; 5.2. Lattice Methods for Vanilla Options; 5.2.1. Standard Binomial Lattice; 5.2.2. Constructing and Using the Standard Binomial Lattice; 5.2.3. Log Transformed Binomial Lattice; 5.2.4. Johnson Binomial Lattice; 5.2.5. Trinomial Lattice; 5.3. Grid Methods for Vanilla Options; 5.3.1. Introduction; 5.3.2. Standard Grids
|
505 |
8 |
|
|a 5.3.3. Log-transformed GridsChapter 6 Multi-asset Options; 6.1. Introduction; 6.2. The Multi-asset Black-Scholes Equation; 6.3. Multidimensional Monte Carlo Methods; 6.4. Introduction to Multidimensional Lattice Methods; 6.5. Two Asset Options; 6.5.1. European Exchange Options; 6.5.2. European Options on the Maximum or Minimum; 6.5.3. American Options; 6.6. Three Asset Options; Chapter 7 Power Contracts; 7.1. Imbalance Risk; 7.1.1. The Stand-alone Cost; 7.1.2. The Bene.t of Including the Customer into the Portfolio; 7.1.3. Market Index Price (MIP)
|
500 |
|
|
|a 7.1.4. System Buy Price (SBP) and System Sell Price (SSP)
|
520 |
|
|
|a The book describes both mathematical and computational tools for energy and power risk management, deriving from first principles stochastic models for simulating commodity risk and how to design robust C++ to implement these models.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Power resources
|x Risk management
|x Mathematical models.
|
650 |
|
0 |
|a Power resources
|x Risk management
|x Data processing.
|
650 |
|
6 |
|a Ressources énergétiques
|x Gestion du risque
|x Modèles mathématiques.
|
650 |
|
6 |
|a Ressources énergétiques
|x Gestion du risque
|x Informatique.
|
650 |
|
7 |
|a Computer science.
|2 bicssc
|
650 |
|
7 |
|a Computers
|x General.
|2 bisacsh
|
758 |
|
|
|i has work:
|a Energy power risk (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGqRjbh4DCKBtcGXV96CpK
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Levy, George.
|t Energy Power Risk : Derivatives, Computation and Optimization.
|d Bingley : Emerald Publishing Limited, ©2018
|z 9781787435285
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5608877
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH34988389
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL5608877
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 15877159
|
994 |
|
|
|a 92
|b IZTAP
|