Cargando…

Energy Power Risk : Derivatives, Computation and Optimization.

The book describes both mathematical and computational tools for energy and power risk management, deriving from first principles stochastic models for simulating commodity risk and how to design robust C++ to implement these models.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Levy, George
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bingley : Emerald Publishing Limited, 2018.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_on1078571906
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 181208s2018 xx o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d YDX  |d MERUC  |d OTZ  |d OCLCO  |d OCLCQ  |d SFB  |d UKAHL  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCL 
019 |a 1078567741 
020 |a 9781787435278 
020 |a 178743527X 
020 |z 1787435288 
020 |z 9781787435285 
029 1 |a AU@  |b 000067268526 
035 |a (OCoLC)1078571906  |z (OCoLC)1078567741 
050 4 |a HD9502-9502.5 
080 |a 338 
082 0 4 |a 511.3 
049 |a UAMI 
100 1 |a Levy, George. 
245 1 0 |a Energy Power Risk :  |b Derivatives, Computation and Optimization. 
260 |a Bingley :  |b Emerald Publishing Limited,  |c 2018. 
300 |a 1 online resource (345 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Front Cover; Energy Power Risk: Derivatives, Computation and Optimization; Copyright Page; Contents; List of Figures; List of Tables; Notations; Preface; Chapter 1 Overview; Chapter 2 Brownian Motion and Stochastic Processes; 2.1. Brownian Motion; 2.1.1. The Properties of Brownian Motion; 2.1.2. A Brownian Model of Asset Price Movements; 2.2. Ito's Formula (or Lemma); 2.3. Girsanov's Theorem; 2.4. Ito's Lemma for Multi-Asset Geometric Brownian Motion; 2.5. Ito Product and Quotient Rules in Two Dimensions; 2.6. Ito Product in n Dimensions; 2.7. The Brownian Bridge; 2.9. Poisson Process 
505 8 |a 2.10. Stochastic Integrals2.10.1. Fubini's Theorem; 2.11. Selected Problems; Chapter 3 Fundamental Power Price Model; 3.1. A Power Stack Model; 3.2. ModelingWind and Solar Generation; 3.3. Simulated Half Hourly Power Price; 4 Single Asset European Options; 4.1. Introduction; 4.2. Pricing Derivatives Using a Martingale Measure; 4.3. Put -- Call Parity; 4.3.1. Continuous Dividends; 4.4. Vanilla Options and The Black -- Scholes Model; 4.4.1. The Option Pricing Partial Differential Equation; 4.4.2. The Multi-Asset Option Pricing Partial Differential Equation; 4.4.3. The Black-Scholes Formula 
505 8 |a 4.4.3.1. The Inclusion of Continuous Dividends4.4.3.2. The Greeks; 4.4.4. Historical and Implied Volatility; 4.4.4.1. Historical Volatility; 4.4.4.2. Implied Volatility; 4.4.5. Microsoft Excel; 4.5. One-factor Spot Model; 4.6. One Factor Forward Curve Model; 4.6.1. Introduction; 4.6.2. The Spot Price Process; 4.6.3. The Relationship Between the Forward Price and the Spot Price; 4.6.4. Option Pricing Formula; 4.7. Two- factor Spot Model; 4.8. Multifactor Forward Curve Model; 4.9. Johnson Distribution; 4.9.1. Option Pricing Formula; 4.9.2. Parameter Estimation; 4.10. Weibull Distribution 
505 8 |a 4.10.1. StandardWeibull Distribution4.10.2. Doubly TruncatedWeibull Distribution; 4.11. Merton Jump Diffusion Model; 4.11.1. Monte Carlo Simulation; 4.11.2. Analytic Option Pricing Formulae; Chapter 5 Single Asset American Style Options; 5.1. Introduction; 5.2. Lattice Methods for Vanilla Options; 5.2.1. Standard Binomial Lattice; 5.2.2. Constructing and Using the Standard Binomial Lattice; 5.2.3. Log Transformed Binomial Lattice; 5.2.4. Johnson Binomial Lattice; 5.2.5. Trinomial Lattice; 5.3. Grid Methods for Vanilla Options; 5.3.1. Introduction; 5.3.2. Standard Grids 
505 8 |a 5.3.3. Log-transformed GridsChapter 6 Multi-asset Options; 6.1. Introduction; 6.2. The Multi-asset Black-Scholes Equation; 6.3. Multidimensional Monte Carlo Methods; 6.4. Introduction to Multidimensional Lattice Methods; 6.5. Two Asset Options; 6.5.1. European Exchange Options; 6.5.2. European Options on the Maximum or Minimum; 6.5.3. American Options; 6.6. Three Asset Options; Chapter 7 Power Contracts; 7.1. Imbalance Risk; 7.1.1. The Stand-alone Cost; 7.1.2. The Bene.t of Including the Customer into the Portfolio; 7.1.3. Market Index Price (MIP) 
500 |a 7.1.4. System Buy Price (SBP) and System Sell Price (SSP) 
520 |a The book describes both mathematical and computational tools for energy and power risk management, deriving from first principles stochastic models for simulating commodity risk and how to design robust C++ to implement these models. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Power resources  |x Risk management  |x Mathematical models. 
650 0 |a Power resources  |x Risk management  |x Data processing. 
650 6 |a Ressources énergétiques  |x Gestion du risque  |x Modèles mathématiques. 
650 6 |a Ressources énergétiques  |x Gestion du risque  |x Informatique. 
650 7 |a Computer science.  |2 bicssc 
650 7 |a Computers  |x General.  |2 bisacsh 
758 |i has work:  |a Energy power risk (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGqRjbh4DCKBtcGXV96CpK  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Levy, George.  |t Energy Power Risk : Derivatives, Computation and Optimization.  |d Bingley : Emerald Publishing Limited, ©2018  |z 9781787435285 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5608877  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH34988389 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5608877 
938 |a YBP Library Services  |b YANK  |n 15877159 
994 |a 92  |b IZTAP