Cargando…

Novel carbon materials and composites : synthesis, properties and applications /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Jiang, Xin, (Chemist) (Editor ), Kang, Zhenhui (Editor ), Guo, Xiaoning (Editor ), Zhuang, Hao (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, NJ, USA : John Wiley & Sons, 2019.
Colección:Nanocarbon chemistry and interfaces.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover; Title Page; Copyright; Contents; List of Contributors; Series Preface; Preface; Chapter 1 Cubic Silicon Carbide: Growth, Properties, and Electrochemical Applications; 1.1 General Overview of Silicon Carbide; 1.1.1 SiC Properties; 1.1.2 SiC Applications; 1.1.3 Scope of this Chapter; 1.2 Synthesis of Silicon Carbide; 1.2.1 Acheson Process; 1.2.2 Physical Vapor Transport; 1.2.3 Chemical Vapor Deposition; 1.3 Properties of Cubic Silicon Carbide; 1.3.1 Surface Morphology; 1.3.2 Electrochemical Properties; 1.3.3 Surface Chemistry; 1.3.3.1 Surface Terminations
  • 1.3.3.2 Surface Functionalization1.4 Electrochemical Applications of Cubic Silicon Carbide Films; 1.4.1 Electrochemical Sensors; 1.4.2 Biosensors; 1.4.3 Energy Storage; 1.4.4 Other Applications; 1.5 Conclusions; Acknowledgements; References; Chapter 2 Application of Silicon Carbide in Photocatalysis; 2.1 Preparation of SiC with High Surface Area; 2.1.1 Carbon Template Method; 2.1.2 Sol-gel Method; 2.1.3 Polycarbosilane Pyrolysis Method; 2.2 Photocatalytic Water-Splitting; 2.3 Photocatalytic Degradation of Pollutants; 2.4 Photocatalytic Selective Organic Transformations
  • 2.5 Photocatalytic CO2 ReductionReferences; Chapter 3 Application of Silicon Carbide in Electrocatalysis; 3.1 Electrochemical Sensors; 3.2 Direct Methanol Fuel Cells; 3.3 Dye-sensitized Solar Cells; 3.4 Lithium-ion Batteries; 3.5 Supercapacitors; References; Chapter 4 Carbon Nitride Fabrication and Its Water-Splitting Applications; 4.1 Introduction; 4.2 Preparation of Pristine g-C3N4; 4.2.1 Effect of Precursors; 4.2.2 Effect of Reaction Parameters; 4.3 Bandgap Engineering by Doping and Copolymerization; 4.3.1 Doping of g-C3N4; 4.3.1.1 C-doping and N-vacancy; 4.3.1.2 S-doping; 4.3.1.3 P-doping
  • 4.3.1.4 Metal doping4.3.2 Copolymerization of g-C3N4; 4.4 Nanostructure Engineering of g-C3N4; 4.4.1 Ordered Mesoporous Nanostructures of g-C3N4; 4.4.1.1 Hard Templating Methods; 4.4.1.2 Soft Templating Methods; 4.4.1.3 Template-free Methods; 4.4.2 Exfoliation to 2D Nanosheets of g-C3N4; 4.4.3 0D Quantum Dots of g-C3N4; 4.5 g-C3N4 Composite Photocatalysts; 4.5.1 Metal/g-C3N4 Heterojunctions; 4.5.2 Graphitic Carbon/g-C3N4 Heterojunctions; 4.5.3 Semiconductors/g-C3N4 Heterojunctions; 4.5.3.1 Type-II Heterojunction; 4.5.3.2 Z-scheme; 4.5.3.3 0D/2D Heterostructures; 4.5.3.4 g-C3N4 Homojunctions
  • 4.5.3.5 Dyes Sensitization4.5.4 Deposition of Earth-Abundant Cocatalysts; 4.6 Conclusions and Outlook; References; Chapter 5 Carbon Materials for Supercapacitors; 5.1 Introduction; 5.2 Affecting Factors; 5.2.1 Specific Surface Area; 5.2.2 Pore Size; 5.2.3 Surface Functional Groups; 5.2.4 Electrical Conductivity; 5.3 Electrolyte; 5.3.1 Aqueous Electrolyte; 5.3.2 Organic Electrolyte; 5.3.3 Ionic Liquid Electrolytes; 5.4 Electrode Materials; 5.4.1 Activated Carbons; 5.4.2 Graphene; 5.4.3 Carbon Nanotubes; 5.4.4 Carbide-Derived Carbon; 5.4.5 Carbon Aerogels; 5.5 Conclusion and Outlook; References