Cargando…

Machine Learning with Scikit-Learn Quick Start Guide : Classification, Regression, and Clustering Techniques in Python.

Scikit-learn is a robust machine learning library for the Python programming language. It provides a set of supervised and unsupervised learning algorithms. This book is the easiest way to learn how to deploy, optimize and evaluate all the important machine learning algorithms that scikit-learn prov...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Jolly, Kevin
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing Ltd, 2018.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_on1076229257
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 181124s2018 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d MERUC  |d YDX  |d OCLCQ  |d CHVBK  |d OCLCO  |d OCLCF  |d RDF  |d OCLCQ  |d NLW  |d UKMGB  |d OCLCO  |d K6U  |d OCLCQ  |d OCLCO 
015 |a GBC209246  |2 bnb 
016 7 |a 019121365  |2 Uk 
019 |a 1066183393 
020 |a 9781789347371 
020 |a 1789347378 
020 |z 9781789343700  |q print 
029 1 |a AU@  |b 000065066008 
029 1 |a CHNEW  |b 001033222 
029 1 |a CHVBK  |b 555523217 
029 1 |a UKMGB  |b 019121365 
029 1 |a AU@  |b 000070496566 
035 |a (OCoLC)1076229257  |z (OCoLC)1066183393 
037 |a 9781789347371  |b Packt Publishing 
050 4 |a QA76.73.P98  |b .J655 2018 
082 0 4 |a 005.133  |2 23 
049 |a UAMI 
100 1 |a Jolly, Kevin. 
245 1 0 |a Machine Learning with Scikit-Learn Quick Start Guide :  |b Classification, Regression, and Clustering Techniques in Python. 
260 |a Birmingham :  |b Packt Publishing Ltd,  |c 2018. 
300 |a 1 online resource (164 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Cover; Title Page; Copyright and Credits; Dedication; About Packt; Contributors; Table of Contents; Preface; Chapter 1: Introducing Machine Learning with scikit-learn; A brief introduction to machine learning; Supervised learning; Unsupervised learning; What is scikit-learn?; Installing scikit-learn; The pip method; The Anaconda method; Additional packages; Pandas; Matplotlib; Tree; Pydotplus; Image; Algorithms that you will learn to implement using scikit-learn; Supervised learning algorithms; Unsupervised learning algorithms; Summary. 
505 8 |a Chapter 2: Predicting Categories with K-Nearest NeighborsTechnical requirements; Preparing a dataset for machine learning with scikit-learn; Dropping features that are redundant; Reducing the size of the data; Encoding the categorical variables; Missing values; The k-NN algorithm; Implementing the k-NN algorithm using scikit-learn; Splitting the data into training and test sets; Implementation and evaluation of your model; Fine-tuning the parameters of the k-NN algorithm; Scaling for optimized performance; Summary; Chapter 3: Predicting Categories with Logistic Regression. 
505 8 |a Technical requirementsUnderstanding logistic regression mathematically ; Implementing logistic regression using scikit-learn; Splitting the data into training and test sets; Fine-tuning the hyperparameters; Scaling the data; Interpreting the logistic regression model; Summary; Chapter 4: Predicting Categories with Naive Bayes and SVMs; Technical requirements; The Naive Bayes algorithm ; Implementing the Naive Bayes algorithm in scikit-learn; Support vector machines; Implementing the linear support vector machine algorithm in scikit-learn; Hyperparameter optimization for the linear SVMs. 
505 8 |a Graphical hyperparameter optimizationHyperparameter optimization using GridSearchCV; Scaling the data for performance improvement; Summary; Chapter 5: Predicting Numeric Outcomes with Linear Regression; Technical requirements; The inner mechanics of the linear regression algorithm; Implementing linear regression in scikit-learn; Linear regression in two dimensions ; Using linear regression to predict mobile transaction amount; Scaling your data; Model optimization ; Ridge regression; Lasso regression; Summary; Chapter 6: Classification and Regression with Trees; Technical requirements. 
505 8 |a Classification treesThe decision tree classifier; Picking the best feature; The Gini coefficient; Implementing the decision tree classifier in scikit-learn; Hyperparameter tuning for the decision tree; Visualizing the decision tree; The random forests classifier; Implementing the random forest classifier in scikit-learn; Hyperparameter tuning for random forest algorithms; The AdaBoost classifier; Implementing the AdaBoost classifier in scikit-learn; Hyperparameter tuning for the AdaBoost classifier; Regression trees; The decision tree regressor. 
500 |a Implementing the decision tree regressor in scikit-learn. 
520 |a Scikit-learn is a robust machine learning library for the Python programming language. It provides a set of supervised and unsupervised learning algorithms. This book is the easiest way to learn how to deploy, optimize and evaluate all the important machine learning algorithms that scikit-learn provides. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Python. 
650 0 |a Machine learning. 
650 6 |a Apprentissage automatique. 
650 7 |a Database design & theory.  |2 bicssc 
650 7 |a Data capture & analysis.  |2 bicssc 
650 7 |a Machine learning.  |2 bicssc 
650 7 |a Information architecture.  |2 bicssc 
650 7 |a Mathematical theory of computation.  |2 bicssc 
650 7 |a Computers  |x Data Processing.  |2 bisacsh 
650 7 |a Computers  |x Data Modeling & Design.  |2 bisacsh 
650 7 |a Computers  |x Machine Theory.  |2 bisacsh 
650 7 |a Machine learning  |2 fast 
776 0 8 |i Print version:  |a Jolly, Kevin.  |t Machine Learning with Scikit-Learn Quick Start Guide : Classification, Regression, and Clustering Techniques in Python.  |d Birmingham : Packt Publishing Ltd, ©2018  |z 9781789343700 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5597867  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL5597867 
938 |a YBP Library Services  |b YANK  |n 15844119 
994 |a 92  |b IZTAP