|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
EBOOKCENTRAL_on1076229257 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n|---||||| |
008 |
181124s2018 enk o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d OCLCQ
|d MERUC
|d YDX
|d OCLCQ
|d CHVBK
|d OCLCO
|d OCLCF
|d RDF
|d OCLCQ
|d NLW
|d UKMGB
|d OCLCO
|d K6U
|d OCLCQ
|d OCLCO
|
015 |
|
|
|a GBC209246
|2 bnb
|
016 |
7 |
|
|a 019121365
|2 Uk
|
019 |
|
|
|a 1066183393
|
020 |
|
|
|a 9781789347371
|
020 |
|
|
|a 1789347378
|
020 |
|
|
|z 9781789343700
|q print
|
029 |
1 |
|
|a AU@
|b 000065066008
|
029 |
1 |
|
|a CHNEW
|b 001033222
|
029 |
1 |
|
|a CHVBK
|b 555523217
|
029 |
1 |
|
|a UKMGB
|b 019121365
|
029 |
1 |
|
|a AU@
|b 000070496566
|
035 |
|
|
|a (OCoLC)1076229257
|z (OCoLC)1066183393
|
037 |
|
|
|a 9781789347371
|b Packt Publishing
|
050 |
|
4 |
|a QA76.73.P98
|b .J655 2018
|
082 |
0 |
4 |
|a 005.133
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Jolly, Kevin.
|
245 |
1 |
0 |
|a Machine Learning with Scikit-Learn Quick Start Guide :
|b Classification, Regression, and Clustering Techniques in Python.
|
260 |
|
|
|a Birmingham :
|b Packt Publishing Ltd,
|c 2018.
|
300 |
|
|
|a 1 online resource (164 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Cover; Title Page; Copyright and Credits; Dedication; About Packt; Contributors; Table of Contents; Preface; Chapter 1: Introducing Machine Learning with scikit-learn; A brief introduction to machine learning; Supervised learning; Unsupervised learning; What is scikit-learn?; Installing scikit-learn; The pip method; The Anaconda method; Additional packages; Pandas; Matplotlib; Tree; Pydotplus; Image; Algorithms that you will learn to implement using scikit-learn; Supervised learning algorithms; Unsupervised learning algorithms; Summary.
|
505 |
8 |
|
|a Chapter 2: Predicting Categories with K-Nearest NeighborsTechnical requirements; Preparing a dataset for machine learning with scikit-learn; Dropping features that are redundant; Reducing the size of the data; Encoding the categorical variables; Missing values; The k-NN algorithm; Implementing the k-NN algorithm using scikit-learn; Splitting the data into training and test sets; Implementation and evaluation of your model; Fine-tuning the parameters of the k-NN algorithm; Scaling for optimized performance; Summary; Chapter 3: Predicting Categories with Logistic Regression.
|
505 |
8 |
|
|a Technical requirementsUnderstanding logistic regression mathematically ; Implementing logistic regression using scikit-learn; Splitting the data into training and test sets; Fine-tuning the hyperparameters; Scaling the data; Interpreting the logistic regression model; Summary; Chapter 4: Predicting Categories with Naive Bayes and SVMs; Technical requirements; The Naive Bayes algorithm ; Implementing the Naive Bayes algorithm in scikit-learn; Support vector machines; Implementing the linear support vector machine algorithm in scikit-learn; Hyperparameter optimization for the linear SVMs.
|
505 |
8 |
|
|a Graphical hyperparameter optimizationHyperparameter optimization using GridSearchCV; Scaling the data for performance improvement; Summary; Chapter 5: Predicting Numeric Outcomes with Linear Regression; Technical requirements; The inner mechanics of the linear regression algorithm; Implementing linear regression in scikit-learn; Linear regression in two dimensions ; Using linear regression to predict mobile transaction amount; Scaling your data; Model optimization ; Ridge regression; Lasso regression; Summary; Chapter 6: Classification and Regression with Trees; Technical requirements.
|
505 |
8 |
|
|a Classification treesThe decision tree classifier; Picking the best feature; The Gini coefficient; Implementing the decision tree classifier in scikit-learn; Hyperparameter tuning for the decision tree; Visualizing the decision tree; The random forests classifier; Implementing the random forest classifier in scikit-learn; Hyperparameter tuning for random forest algorithms; The AdaBoost classifier; Implementing the AdaBoost classifier in scikit-learn; Hyperparameter tuning for the AdaBoost classifier; Regression trees; The decision tree regressor.
|
500 |
|
|
|a Implementing the decision tree regressor in scikit-learn.
|
520 |
|
|
|a Scikit-learn is a robust machine learning library for the Python programming language. It provides a set of supervised and unsupervised learning algorithms. This book is the easiest way to learn how to deploy, optimize and evaluate all the important machine learning algorithms that scikit-learn provides.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Python.
|
650 |
|
0 |
|a Machine learning.
|
650 |
|
6 |
|a Apprentissage automatique.
|
650 |
|
7 |
|a Database design & theory.
|2 bicssc
|
650 |
|
7 |
|a Data capture & analysis.
|2 bicssc
|
650 |
|
7 |
|a Machine learning.
|2 bicssc
|
650 |
|
7 |
|a Information architecture.
|2 bicssc
|
650 |
|
7 |
|a Mathematical theory of computation.
|2 bicssc
|
650 |
|
7 |
|a Computers
|x Data Processing.
|2 bisacsh
|
650 |
|
7 |
|a Computers
|x Data Modeling & Design.
|2 bisacsh
|
650 |
|
7 |
|a Computers
|x Machine Theory.
|2 bisacsh
|
650 |
|
7 |
|a Machine learning
|2 fast
|
776 |
0 |
8 |
|i Print version:
|a Jolly, Kevin.
|t Machine Learning with Scikit-Learn Quick Start Guide : Classification, Regression, and Clustering Techniques in Python.
|d Birmingham : Packt Publishing Ltd, ©2018
|z 9781789343700
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5597867
|z Texto completo
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL5597867
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 15844119
|
994 |
|
|
|a 92
|b IZTAP
|