|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
EBOOKCENTRAL_on1065248741 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n|---||||| |
008 |
181117s2018 riu o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d OCLCQ
|d LOA
|d OCLCO
|d OCLCF
|d OCLCO
|d K6U
|d OCLCQ
|d OCLCO
|d OCLCL
|
020 |
|
|
|a 9781470448233
|
020 |
|
|
|a 1470448238
|
029 |
1 |
|
|a AU@
|b 000069393024
|
035 |
|
|
|a (OCoLC)1065248741
|
050 |
|
4 |
|a QA251.3 .F665 2018
|
082 |
0 |
4 |
|a 512.44
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Fomin, Sergey.
|
245 |
1 |
0 |
|a Cluster Algebras and Triangulated Surfaces Part II.
|
260 |
|
|
|a Providence :
|b American Mathematical Society,
|c 2018.
|
300 |
|
|
|a 1 online resource (110 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society Ser. ;
|v v. 255
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Cover; Title page; Chapter 1. Introduction; Chapter 2. Non-normalized cluster algebras; Chapter 3. Rescaling and normalization; Chapter 4. Cluster algebras of geometric type and their positive realizations; Chapter 5. Bordered surfaces, arc complexes, and tagged arcs; Chapter 6. Structural results; Chapter 7. Lambda lengths on bordered surfaces with punctures; Chapter 8. Lambda lengths of tagged arcs; Chapter 9. Opened surfaces; Chapter 10. Lambda lengths on opened surfaces; Chapter 11. Non-normalized exchange patterns from surfaces; Chapter 12. Laminations and shear coordinates.
|
505 |
8 |
|
|a Chapter 13. Shear coordinates with respect to tagged triangulationsChapter 14. Tropical lambda lengths; Chapter 15. Laminated Teichmüller spaces; Chapter 16. Topological realizations of some coordinate rings; Chapter 17. Principal and universal coefficients; Appendix A. Tropical degeneration and relative lambda lengths; Appendix B. Versions of Teichmüller spaces and coordinates; Bibliography; Back Cover.
|
520 |
|
|
|a For any cluster algebra whose underlying combinatorial data can be encoded by a bordered surface with marked points, the authors construct a geometric realization in terms of suitable decorated Teichmüller space of the surface. On the geometric side, this requires opening the surface at each interior marked point into an additional geodesic boundary component. On the algebraic side, it relies on the notion of a non-normalized cluster algebra and the machinery of tropical lambda lengths. The authors' model allows for an arbitrary choice of coefficients which translates into a choice of a family.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Cluster algebras.
|
650 |
|
0 |
|a Lambda algebra.
|
650 |
|
0 |
|a Teichmüller spaces.
|
650 |
|
6 |
|a Algèbres amassées.
|
650 |
|
6 |
|a Lambda-algèbre.
|
650 |
|
6 |
|a Espaces de Teichmüller.
|
650 |
|
7 |
|a Cluster algebras
|2 fast
|
650 |
|
7 |
|a Lambda algebra
|2 fast
|
650 |
|
7 |
|a Teichmüller spaces
|2 fast
|
700 |
1 |
|
|a Thurston, Professor Dylan.
|
758 |
|
|
|i has work:
|a Part II Cluster algebras and triangulated surfaces Lambda lengths (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCFKCtpDbKCYvjTtgf3RbtX
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Fomin, Sergey.
|t Cluster Algebras and Triangulated Surfaces Part II: Lambda Lengths.
|d Providence : American Mathematical Society, ©2018
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society Ser.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5571105
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL5571105
|
994 |
|
|
|a 92
|b IZTAP
|