Cargando…

Cluster Algebras and Triangulated Surfaces Part II.

For any cluster algebra whose underlying combinatorial data can be encoded by a bordered surface with marked points, the authors construct a geometric realization in terms of suitable decorated Teichmüller space of the surface. On the geometric side, this requires opening the surface at each interi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Fomin, Sergey
Otros Autores: Thurston, Professor Dylan
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence : American Mathematical Society, 2018.
Colección:Memoirs of the American Mathematical Society Ser.
Temas:
Acceso en línea:Texto completo
Descripción
Sumario:For any cluster algebra whose underlying combinatorial data can be encoded by a bordered surface with marked points, the authors construct a geometric realization in terms of suitable decorated Teichmüller space of the surface. On the geometric side, this requires opening the surface at each interior marked point into an additional geodesic boundary component. On the algebraic side, it relies on the notion of a non-normalized cluster algebra and the machinery of tropical lambda lengths. The authors' model allows for an arbitrary choice of coefficients which translates into a choice of a family.
Descripción Física:1 online resource (110 pages)
ISBN:9781470448233
1470448238