Cargando…

Algebraic Overline{ Mathbb{Q}}-Groups As Abstract Groups.

The author analyzes the abstract structure of algebraic groups over an algebraically closed field K. For K of characteristic zero and G a given connected affine algebraic \overline{\mathbb Q}-group, the main theorem describes all the affine algebraic \overline{\mathbb Q} -groups H such that the grou...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Écon, Olivier
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence : American Mathematical Society, 2018.
Colección:Memoirs of the American Mathematical Society Ser.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_on1065073359
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 181117s2018 riu o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d LOA  |d OCLCO  |d OCLCF  |d OCLCO  |d K6U  |d OCLCQ  |d OCLCO 
020 |a 9781470448158 
020 |a 1470448157 
029 1 |a AU@  |b 000069439595 
035 |a (OCoLC)1065073359 
050 4 |a QA152 .F743 2018 
082 0 4 |a 512.9 
049 |a UAMI 
100 1 |a Écon, Olivier. 
245 1 0 |a Algebraic Overline{ Mathbb{Q}}-Groups As Abstract Groups. 
260 |a Providence :  |b American Mathematical Society,  |c 2018. 
300 |a 1 online resource (112 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society Ser. ;  |v v. 255 
588 0 |a Print version record. 
505 0 |a Cover; Title page; Chapter 1. Introduction; 1.1. Related work; 1.2. The field of definition; 1.3. Overview of the paper; Chapter 2. Background material; 2.1. Groups of finite Morley rank; 2.2. Fundamental theorems; 2.3. Decent tori and pseudo-tori; 2.4. Unipotence; Chapter 3. Expanded pure groups; Chapter 4. Unipotent groups over \ov{\Q} and definable linearity; Chapter 5. Definably affine groups; 5.1. Definition and generalities; 5.2. The subgroup (); 5.3. The subgroup (); Chapter 6. Tori in expanded pure groups; Chapter 7. The definably linear quotients of an -group. 
505 8 |a 7.1. The subgroups () and ()7.2. The nilpotence of (); 7.3. The subgroup () when the ground field is \ov{\Q}; 7.4. The subgroups () and () in positive characteristic; Chapter 8. The group _{ } and the Main Theorem for =\ov{\Q}; Chapter 9. The Main Theorem for `"ov{\Q}; Chapter 10. Bi-interpretability and standard isomorphisms; 10.1. Positive characteristic and bi-interpretability; 10.2. Characteristic zero; Acknowledgements; Bibliography; Index of notations; Index; Back Cover. 
520 |a The author analyzes the abstract structure of algebraic groups over an algebraically closed field K. For K of characteristic zero and G a given connected affine algebraic \overline{\mathbb Q}-group, the main theorem describes all the affine algebraic \overline{\mathbb Q} -groups H such that the groups H(K) and G(K) are isomorphic as abstract groups. In the same time, it is shown that for any two connected algebraic \overline{\mathbb Q} -groups G and H, the elementary equivalence of the pure groups G(K) and H(K) implies that they are abstractly isomorphic. In the final section, the author appli. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Algebra. 
650 0 |a Finite groups. 
650 0 |a Isomorphisms (Mathematics) 
650 6 |a Algèbre. 
650 6 |a Groupes finis. 
650 6 |a Isomorphismes (Mathématiques) 
650 7 |a algebra.  |2 aat 
650 7 |a Algebra  |2 fast 
650 7 |a Finite groups  |2 fast 
650 7 |a Isomorphisms (Mathematics)  |2 fast 
776 0 8 |i Print version:  |a Écon, Olivier.  |t Algebraic Overline{ Mathbb{Q}}-Groups As Abstract Groups.  |d Providence : American Mathematical Society, ©2018 
830 0 |a Memoirs of the American Mathematical Society Ser. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5571101  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5571101 
994 |a 92  |b IZTAP