|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
EBOOKCENTRAL_on1065073359 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n|---||||| |
008 |
181117s2018 riu o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d OCLCQ
|d LOA
|d OCLCO
|d OCLCF
|d OCLCO
|d K6U
|d OCLCQ
|d OCLCO
|
020 |
|
|
|a 9781470448158
|
020 |
|
|
|a 1470448157
|
029 |
1 |
|
|a AU@
|b 000069439595
|
035 |
|
|
|a (OCoLC)1065073359
|
050 |
|
4 |
|a QA152 .F743 2018
|
082 |
0 |
4 |
|a 512.9
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Écon, Olivier.
|
245 |
1 |
0 |
|a Algebraic Overline{ Mathbb{Q}}-Groups As Abstract Groups.
|
260 |
|
|
|a Providence :
|b American Mathematical Society,
|c 2018.
|
300 |
|
|
|a 1 online resource (112 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society Ser. ;
|v v. 255
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Cover; Title page; Chapter 1. Introduction; 1.1. Related work; 1.2. The field of definition; 1.3. Overview of the paper; Chapter 2. Background material; 2.1. Groups of finite Morley rank; 2.2. Fundamental theorems; 2.3. Decent tori and pseudo-tori; 2.4. Unipotence; Chapter 3. Expanded pure groups; Chapter 4. Unipotent groups over \ov{\Q} and definable linearity; Chapter 5. Definably affine groups; 5.1. Definition and generalities; 5.2. The subgroup (); 5.3. The subgroup (); Chapter 6. Tori in expanded pure groups; Chapter 7. The definably linear quotients of an -group.
|
505 |
8 |
|
|a 7.1. The subgroups () and ()7.2. The nilpotence of (); 7.3. The subgroup () when the ground field is \ov{\Q}; 7.4. The subgroups () and () in positive characteristic; Chapter 8. The group _{ } and the Main Theorem for =\ov{\Q}; Chapter 9. The Main Theorem for `"ov{\Q}; Chapter 10. Bi-interpretability and standard isomorphisms; 10.1. Positive characteristic and bi-interpretability; 10.2. Characteristic zero; Acknowledgements; Bibliography; Index of notations; Index; Back Cover.
|
520 |
|
|
|a The author analyzes the abstract structure of algebraic groups over an algebraically closed field K. For K of characteristic zero and G a given connected affine algebraic \overline{\mathbb Q}-group, the main theorem describes all the affine algebraic \overline{\mathbb Q} -groups H such that the groups H(K) and G(K) are isomorphic as abstract groups. In the same time, it is shown that for any two connected algebraic \overline{\mathbb Q} -groups G and H, the elementary equivalence of the pure groups G(K) and H(K) implies that they are abstractly isomorphic. In the final section, the author appli.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Algebra.
|
650 |
|
0 |
|a Finite groups.
|
650 |
|
0 |
|a Isomorphisms (Mathematics)
|
650 |
|
6 |
|a Algèbre.
|
650 |
|
6 |
|a Groupes finis.
|
650 |
|
6 |
|a Isomorphismes (Mathématiques)
|
650 |
|
7 |
|a algebra.
|2 aat
|
650 |
|
7 |
|a Algebra
|2 fast
|
650 |
|
7 |
|a Finite groups
|2 fast
|
650 |
|
7 |
|a Isomorphisms (Mathematics)
|2 fast
|
776 |
0 |
8 |
|i Print version:
|a Écon, Olivier.
|t Algebraic Overline{ Mathbb{Q}}-Groups As Abstract Groups.
|d Providence : American Mathematical Society, ©2018
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society Ser.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5571101
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL5571101
|
994 |
|
|
|a 92
|b IZTAP
|