|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
EBOOKCENTRAL_on1064943337 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n|---||||| |
008 |
181117s2018 riu o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d OCLCQ
|d LOA
|d OCLCO
|d OCLCF
|d OCLCO
|d K6U
|d OCLCQ
|d OCLCO
|
020 |
|
|
|a 9781470448172
|
020 |
|
|
|a 1470448173
|
035 |
|
|
|a (OCoLC)1064943337
|
050 |
|
4 |
|a QA403 .I93 2018
|
082 |
0 |
4 |
|a 515/.2433
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Ivanisvili, Paata.
|
245 |
1 |
0 |
|a Bellman Function for Extremal Problems in BMO II.
|
260 |
|
|
|a Providence :
|b American Mathematical Society,
|c 2018.
|
300 |
|
|
|a 1 online resource (148 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society Ser. ;
|v v. 255
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Cover; Title page; Chapter 1. Introduction; 1.1. Historical remarks; 1.2. Structure of the paper; Chapter 2. Setting and sketch of proof; 2.1. Setting; 2.2. On concavity of surfaces and functions; Chapter 3. Patterns for Bellman candidates; 3.1. Preliminaries; 3.2. Tangent domains; 3.3. Around the cup; 3.4. Linearity domains; 3.5. Combinatorial properties of foliations; Chapter 4. Evolution of Bellman candidates; 4.1. Simple picture; 4.2. Preparation to evolution; 4.3. Local evolutional theorems; 4.4. Global evolution; 4.5. Examples; Chapter 5. Optimizers; 5.1. Abstract theory.
|
505 |
8 |
|
|a 5.2. Local behavior of optimizers5.3. Global optimizers; 5.4. Examples; Chapter 6. Related questions and further development; 6.1. Related questions; 6.2. Further development; Bibliography; Index; Back Cover.
|
520 |
|
|
|a In a previous study, the authors built the Bellman function for integral functionals on the \mathrm{BMO} space. The present paper provides a development of the subject. They abandon the majority of unwanted restrictions on the function that generates the functional. It is the new evolutional approach that allows the authors to treat the problem in its natural setting. What is more, these new considerations lighten dynamical aspects of the Bellman function, in particular, the evolution of its picture.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Harmonic analysis.
|
650 |
|
0 |
|a Extremal problems (Mathematics)
|
650 |
|
0 |
|a Bounded mean oscillation.
|
650 |
|
6 |
|a Analyse harmonique.
|
650 |
|
6 |
|a Problèmes extrémaux (Mathématiques)
|
650 |
|
6 |
|a Oscillation moyenne bornée.
|
650 |
|
7 |
|a Bounded mean oscillation
|2 fast
|
650 |
|
7 |
|a Extremal problems (Mathematics)
|2 fast
|
650 |
|
7 |
|a Harmonic analysis
|2 fast
|
700 |
1 |
|
|a Stolyarov, Dmitriy M.
|
700 |
1 |
|
|a Vasyunin, Vasily I.
|
776 |
0 |
8 |
|i Print version:
|a Ivanisvili, Paata.
|t Bellman Function for Extremal Problems in BMO II: Evolution.
|d Providence : American Mathematical Society, ©2018
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society Ser.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5571102
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL5571102
|
994 |
|
|
|a 92
|b IZTAP
|