Cargando…

Bellman Function for Extremal Problems in BMO II.

In a previous study, the authors built the Bellman function for integral functionals on the \mathrm{BMO} space. The present paper provides a development of the subject. They abandon the majority of unwanted restrictions on the function that generates the functional. It is the new evolutional approac...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ivanisvili, Paata
Otros Autores: Stolyarov, Dmitriy M., Vasyunin, Vasily I.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence : American Mathematical Society, 2018.
Colección:Memoirs of the American Mathematical Society Ser.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_on1064943337
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 181117s2018 riu o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d LOA  |d OCLCO  |d OCLCF  |d OCLCO  |d K6U  |d OCLCQ  |d OCLCO 
020 |a 9781470448172 
020 |a 1470448173 
035 |a (OCoLC)1064943337 
050 4 |a QA403 .I93 2018 
082 0 4 |a 515/.2433 
049 |a UAMI 
100 1 |a Ivanisvili, Paata. 
245 1 0 |a Bellman Function for Extremal Problems in BMO II. 
260 |a Providence :  |b American Mathematical Society,  |c 2018. 
300 |a 1 online resource (148 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society Ser. ;  |v v. 255 
588 0 |a Print version record. 
505 0 |a Cover; Title page; Chapter 1. Introduction; 1.1. Historical remarks; 1.2. Structure of the paper; Chapter 2. Setting and sketch of proof; 2.1. Setting; 2.2. On concavity of surfaces and functions; Chapter 3. Patterns for Bellman candidates; 3.1. Preliminaries; 3.2. Tangent domains; 3.3. Around the cup; 3.4. Linearity domains; 3.5. Combinatorial properties of foliations; Chapter 4. Evolution of Bellman candidates; 4.1. Simple picture; 4.2. Preparation to evolution; 4.3. Local evolutional theorems; 4.4. Global evolution; 4.5. Examples; Chapter 5. Optimizers; 5.1. Abstract theory. 
505 8 |a 5.2. Local behavior of optimizers5.3. Global optimizers; 5.4. Examples; Chapter 6. Related questions and further development; 6.1. Related questions; 6.2. Further development; Bibliography; Index; Back Cover. 
520 |a In a previous study, the authors built the Bellman function for integral functionals on the \mathrm{BMO} space. The present paper provides a development of the subject. They abandon the majority of unwanted restrictions on the function that generates the functional. It is the new evolutional approach that allows the authors to treat the problem in its natural setting. What is more, these new considerations lighten dynamical aspects of the Bellman function, in particular, the evolution of its picture. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Harmonic analysis. 
650 0 |a Extremal problems (Mathematics) 
650 0 |a Bounded mean oscillation. 
650 6 |a Analyse harmonique. 
650 6 |a Problèmes extrémaux (Mathématiques) 
650 6 |a Oscillation moyenne bornée. 
650 7 |a Bounded mean oscillation  |2 fast 
650 7 |a Extremal problems (Mathematics)  |2 fast 
650 7 |a Harmonic analysis  |2 fast 
700 1 |a Stolyarov, Dmitriy M. 
700 1 |a Vasyunin, Vasily I. 
776 0 8 |i Print version:  |a Ivanisvili, Paata.  |t Bellman Function for Extremal Problems in BMO II: Evolution.  |d Providence : American Mathematical Society, ©2018 
830 0 |a Memoirs of the American Mathematical Society Ser. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5571102  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5571102 
994 |a 92  |b IZTAP