Cargando…

First-Order Logic and Automated Theorem Proving /

There are many kinds of books on formal logic. Some have philosophers as their intended audience, some mathematicians, some computer scien­ tists. Although there is a common core to all such books, they will be very different in emphasis, methods, and even appearance. This book is intended for compu...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Fitting, Melvin (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York, 1996.
Edición:Second edition.
Colección:Graduate texts in computer science.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1 Background
  • 2 Propositional Logic
  • 2.1 Introduction
  • 2.2 Propositional Logic--Syntax
  • 2.3 Propositional Logic--Semantics
  • 2.4 Boolean Valuations
  • 2.5 The Replacement Theorem
  • 2.6 Uniform Notation
  • 2.7 König's Lemma
  • 2.8 Normal Forms
  • 2.9 Normal Form Implementations
  • 3 Semantic Tableaux and Resolution
  • 3.1 Propositional Semantic Tableaux
  • 3.2 Propositional Tableaux Implementations
  • 3.3 Propositional Resolution
  • 3.4 Soundness
  • 3.5 Hintikka's Lemma
  • 3.6 The Model Existence Theorem
  • 3.7 Tableau and Resolution Completeness
  • 3.8 Completeness With Restrictions
  • 3.9 Propositional Consequence
  • 4 Other Propositional Proof Procedures
  • 4.1 Hilbert Systems
  • 4.2 Natural Deduction
  • 4.3 The Sequent Calculus
  • 4.4 The Davis-Putnam Procedure
  • 4.5 Computational Complexity
  • 5 First-Order Logic
  • 5.1 First-Order Logic--Syntax
  • 5.2 Substitutions
  • 5.3 First-Order Semantics
  • 5.4 Herbrand Models
  • 5.5 First-Order Uniform Notation
  • 5.6 Hintikka's Lemma
  • 5.7 Parameters
  • 5.8 The Model Existence Theorem
  • 5.9 Applications
  • 5.10 Logical Consequence
  • 6 First-Order Proof Procedures
  • 6.1 First-Order Semantic Tableaux
  • 6.2 First-Order Resolution
  • 6.3 Soundness
  • 6.4 Completeness
  • 6.5 Hilbert Systems
  • 6.6 Natural Deduction and Gentzen Sequents
  • 7 Implementing Tableaux and Resolution
  • 7.1 What Next
  • 7.2 Unification
  • 7.3 Unification Implemented
  • 7.4 Free-Variable Semantic Tableaux
  • 7.5 A Tableau Implementation
  • 7.6 Free-Variable Resolution
  • 7.7 Soundness
  • 7.8 Free-Variable Tableau Completeness
  • 7.9 Free-Variable Resolution Completeness
  • 8 Further First-Order Features
  • 8.1 Introduction
  • 8.2 The Replacement Theorem
  • 8.3 Skolemization
  • 8.4 Prenex Form
  • 8.5 The AE-Calculus
  • 8.6 Herbrand's Theorem
  • 8.7 Herbrand's Theorem, Constructively
  • 8.8 Gentzen's Theorem
  • 8.9 Cut Elimination
  • 8.10 Do Cuts Shorten Proofs?
  • 8.11 Craig's Interpolation Theorem
  • 8.12 Craig's Interpolation Theorem--Constructively
  • 8.13 Beth's Definability Theorem
  • 8.14 Lyndon's Homomorphism Theorem
  • 9 Equality
  • 9.1 Introduction
  • 9.2 Syntax and Semantics
  • 9.3 The Equality Axioms
  • 9.4 Hintikka's Lemma
  • 9.5 The Model Existence Theorem
  • 9.6 Consequences
  • 9.7 Tableau and Resolution Systems
  • 9.8 Alternate Tableau and Resolution Systems
  • 9.9 A Free-Variable Tableau System With Equality
  • 9.10 A Tableau Implementation With Equality
  • 9.11 Paramodulation
  • References.