Cargando…

First-Order Logic and Automated Theorem Proving /

There are many kinds of books on formal logic. Some have philosophers as their intended audience, some mathematicians, some computer scien­ tists. Although there is a common core to all such books, they will be very different in emphasis, methods, and even appearance. This book is intended for compu...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Fitting, Melvin (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York, 1996.
Edición:Second edition.
Colección:Graduate texts in computer science.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_on1058126001
003 OCoLC
005 20240329122006.0
006 m o d
007 cr nn||||mamaa
008 121227s1996 nyu ob 001 0 eng d
040 |a AU@  |b eng  |e rda  |e pn  |c AU@  |d OCLCO  |d OCLCQ  |d OCLCO  |d TKN  |d OCL  |d LEAUB  |d OCL  |d UKAHL  |d OCLCQ  |d EBLCP  |d COO  |d OCLCF  |d K6U  |d N$T  |d OCLCO  |d OCL  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 958526287 
020 |a 1461223601 
020 |a 9781461223603 
024 7 |a 10.1007/978-1-4612-2360-3  |2 doi 
035 |a (OCoLC)1058126001  |z (OCoLC)958526287 
050 4 |a QA8.9-QA10.3 
072 7 |a UYA  |2 bicssc 
072 7 |a MAT018000  |2 bisacsh 
072 7 |a COM051010  |2 bisacsh 
082 0 4 |a 005.131  |2 23 
049 |a UAMI 
100 1 |a Fitting, Melvin,  |e author. 
245 1 0 |a First-Order Logic and Automated Theorem Proving /  |c by Melvin Fitting. 
250 |a Second edition. 
264 1 |a New York, NY :  |b Springer New York,  |c 1996. 
300 |a 1 online resource (XVIII, 326 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
490 1 |a Graduate Texts in Computer Science,  |x 1868-0941 
504 |a Includes bibliographical references and index. 
505 0 |a 1 Background -- 2 Propositional Logic -- 2.1 Introduction -- 2.2 Propositional Logic--Syntax -- 2.3 Propositional Logic--Semantics -- 2.4 Boolean Valuations -- 2.5 The Replacement Theorem -- 2.6 Uniform Notation -- 2.7 König's Lemma -- 2.8 Normal Forms -- 2.9 Normal Form Implementations -- 3 Semantic Tableaux and Resolution -- 3.1 Propositional Semantic Tableaux -- 3.2 Propositional Tableaux Implementations -- 3.3 Propositional Resolution -- 3.4 Soundness -- 3.5 Hintikka's Lemma -- 3.6 The Model Existence Theorem -- 3.7 Tableau and Resolution Completeness -- 3.8 Completeness With Restrictions -- 3.9 Propositional Consequence -- 4 Other Propositional Proof Procedures -- 4.1 Hilbert Systems -- 4.2 Natural Deduction -- 4.3 The Sequent Calculus -- 4.4 The Davis-Putnam Procedure -- 4.5 Computational Complexity -- 5 First-Order Logic -- 5.1 First-Order Logic--Syntax -- 5.2 Substitutions -- 5.3 First-Order Semantics -- 5.4 Herbrand Models -- 5.5 First-Order Uniform Notation -- 5.6 Hintikka's Lemma -- 5.7 Parameters -- 5.8 The Model Existence Theorem -- 5.9 Applications -- 5.10 Logical Consequence -- 6 First-Order Proof Procedures -- 6.1 First-Order Semantic Tableaux -- 6.2 First-Order Resolution -- 6.3 Soundness -- 6.4 Completeness -- 6.5 Hilbert Systems -- 6.6 Natural Deduction and Gentzen Sequents -- 7 Implementing Tableaux and Resolution -- 7.1 What Next -- 7.2 Unification -- 7.3 Unification Implemented -- 7.4 Free-Variable Semantic Tableaux -- 7.5 A Tableau Implementation -- 7.6 Free-Variable Resolution -- 7.7 Soundness -- 7.8 Free-Variable Tableau Completeness -- 7.9 Free-Variable Resolution Completeness -- 8 Further First-Order Features -- 8.1 Introduction -- 8.2 The Replacement Theorem -- 8.3 Skolemization -- 8.4 Prenex Form -- 8.5 The AE-Calculus -- 8.6 Herbrand's Theorem -- 8.7 Herbrand's Theorem, Constructively -- 8.8 Gentzen's Theorem -- 8.9 Cut Elimination -- 8.10 Do Cuts Shorten Proofs? -- 8.11 Craig's Interpolation Theorem -- 8.12 Craig's Interpolation Theorem--Constructively -- 8.13 Beth's Definability Theorem -- 8.14 Lyndon's Homomorphism Theorem -- 9 Equality -- 9.1 Introduction -- 9.2 Syntax and Semantics -- 9.3 The Equality Axioms -- 9.4 Hintikka's Lemma -- 9.5 The Model Existence Theorem -- 9.6 Consequences -- 9.7 Tableau and Resolution Systems -- 9.8 Alternate Tableau and Resolution Systems -- 9.9 A Free-Variable Tableau System With Equality -- 9.10 A Tableau Implementation With Equality -- 9.11 Paramodulation -- References. 
520 |a There are many kinds of books on formal logic. Some have philosophers as their intended audience, some mathematicians, some computer scien­ tists. Although there is a common core to all such books, they will be very different in emphasis, methods, and even appearance. This book is intended for computer scientists. But even this is not precise. Within computer science formal logic turns up in a number of areas, from pro­ gram verification to logic programming to artificial intelligence. This book is intended for computer scientists interested in automated theo­ rem proving in classical logic. To be more precise yet, it is essentially a theoretical treatment, not a how-to book, although how-to issues are not neglected. This does not mean, of course, that the book will be of no interest to philosophers or mathematicians. It does contain a thorough presentation of formal logic and many proof techniques, and as such it contains all the material one would expect to find in a course in formal logic covering completeness but, not incompleteness issues. The first item to be addressed is, What are we talking about and why are we interested in it? We are primarily talking about truth as used in mathematical discourse, and our interest in it is, or should be, self­ evident. Truth is a semantic concept, so we begin with models and their properties. These are used to define our subject. 
546 |a English. 
588 0 |a Print version record. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Computer science. 
650 0 |a Logic design. 
650 0 |a Automatic theorem proving. 
650 0 |a Logic, Symbolic and mathematical. 
650 0 |a Electronic data processing. 
650 6 |a Informatique. 
650 6 |a Structure logique. 
650 6 |a Théorèmes  |x Démonstration automatique. 
650 6 |a Logique symbolique et mathématique. 
650 7 |a computer science.  |2 aat 
650 7 |a data processing.  |2 aat 
650 7 |a Electronic data processing  |2 fast 
650 7 |a Automatic theorem proving  |2 fast 
650 7 |a Logic design  |2 fast 
650 7 |a Logic, Symbolic and mathematical  |2 fast 
650 7 |a Computer science  |2 fast 
758 |i has work:  |a First-order logic and automated theorem proving (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFPT9hVBcgFGtcJVV47kfy  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 |z 1461275156 
830 0 |a Graduate texts in computer science.  |x 1868-0941 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3077179  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH29644075 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL3077179 
994 |a 92  |b IZTAP