Cargando…

Big Data and HPC.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Grandinetti, L.
Otros Autores: Mirtaheri, S. L., Shahbazian, R.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : IOS Press, Incorporated, 2018.
Colección:Advances in Parallel Computing Ser.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro; Title Page; Preface; Contents; State of the Art and Future Scenarios; Runtime System Architecture for Dynamic Adaptive Execution; High Performance Computing and Big Data Convergence: A Technical Review; Challenges in HPC Evaluation: Towards a Methodology for Scientific Application Requirements; Scaling Big Data Neuroscience: From Interactive Analytics to HPC Platforms; Big Data Challenges; CBIR on Big Data by Use of Deep Learning; APPGRIT: A Parallel Pipeline for Graph Representation in Text Mining; Introduction and Patent Analysis of Signal Processing for Big Data.
  • Analysis and Design of IoT Based Physical Location Monitoring SystemAutonomous Task Scheduling for Fast Big Data Processing; Adaptive Resource Management for Distributed Data Analytics; HPC Challenges; High-Performance Massive Subgraph Counting Using Pipelined Adaptive-Group Communication; Final Parallel and Distributed Computing Assignment for Master Students: Description of the Properties and Parallel Structure of Algorithms; Parallel Motion Estimation Based on GPU and Combined GPU-CPU; GPU-Based Iterative Hill Climbing Algorithm to Solve Symmetric Traveling Salesman Problem.
  • Reliability-Aware Voltage Scaling of Multicore Processors in Dark Silicon EraTime Collection: An Abstraction for Shared Objects in Parallel Programming; Parallel and Distributed Analysis of Microarray Data; Extracting Distributed Architecture from Source Code Using an Evolutionary Approach; An Architectural Approach to Grid Provisioning; Subject Index; Author Index.