Yakov Berkovich; Zvonimir Janko.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Berlin/Boston :
De Gruyter, Inc.,
2018.
|
Colección: | De Gruyter Expositions in Mathematics Ser.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro; Contents; List of definitions and notations; Preface; 257 Nonabelian p-groups with exactly one minimal nonabelian subgroup of exponent> p; 258 2-groups with some prescribed minimal nonabelian subgroups; 259 Nonabelian p-groups, p> 2, all of whose minimal nonabelian subgroups are isomorphic to Mp3; 260 p-groups with many modular subgroups Mpn; 261 Nonabelian p-groups of exponent> p with a small number of maximal abelian subgroups of exponent> p; 262 Nonabelian p-groups all of whose subgroups are powerful.
- 270 p-groups all of whose Ak-subgroups for a fixed k> 1 are metacyclic 271 Two theorems of Blackburn; 272 Nonabelian p-groups all of whose maximal abelian subgroups, except one, are either cyclic or elementary abelian; 273 Nonabelian p-groups all of whose noncyclic maximal abelian subgroups are elementary abelian; 274 Non-Dedekindian p-groups in which any two nonnormal subgroups normalize each other; 275 Nonabelian p-groups with exactly p normal closures of minimal nonabelian subgroups; 276 2-groups all of whose maximal subgroups, except one, are Dedekindian.
- 277 p-groups with exactly two conjugate classes of nonnormal maximal cyclic subgroups 278 Nonmetacyclic p-groups all of whose maximal metacyclic subgroups have index p; 279 Subgroup characterization of some p-groups of maximal class and close to them; 280 Nonabelian p-groups all of whose maximal subgroups, except one, are minimal nonmetacyclic; 281 Nonabelian p-groups in which any two distinct minimal nonabelian subgroups have a cyclic intersection; 282 p-groups with large normal closures of nonnormal subgroups; 283 Nonabelian p-groups with many cyclic centralizers.
- 284 Nonabelian p-groups, p> 2, of exponent> p2 all of whose minimal nonabelian subgroups are of order p3 285 A generalization of Lemma 57.1; 286 Groups ofexponent p with many normal subgroups; 287 p-groups in which the intersection of any two nonincident subgroups is normal; 288 Nonabelian p-groups in which for every minimal nonabelian M M(x) = Z(M); 289 Non-Dedekindian p-groups all of whose maximal nonnormal subgroups are conjugate.