Cargando…

Understanding least squares estimation and geomatics data analysis /

Provides a modern approach to least squares estimation and data analysis for undergraduate land surveying and geomatics programs.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ogundare, John Olusegun (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, NJ : John Wiley & Sons, 2018.
Edición:1st edition.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_on1051777067
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 180904s2018 nju ob 001 0 eng
010 |a  2018042480 
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d OCLCF  |d DG1  |d EBLCP  |d RECBK  |d UKMGB  |d UAB  |d MERER  |d YDX  |d DLC  |d OCLCQ  |d UKAHL  |d UX1  |d K6U  |d VFL  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCL 
016 7 |a 019073665  |2 Uk 
019 |a 1057376356  |a 1124310074  |a 1124363797  |a 1175639143 
020 |a 9781119501404  |q (Adobe PDF) 
020 |a 1119501407 
020 |a 9781119501459  |q (electronic bk. ;  |q oBook) 
020 |a 1119501458  |q (electronic bk. ;  |q oBook) 
020 |a 9781119501442  |q (ePub) 
020 |a 111950144X  |q (ePub) 
020 |z 9781119501398  |q (hardcover) 
020 |z 1119501393 
029 1 |a AU@  |b 000063944971 
029 1 |a CHDSB  |b 006858445 
029 1 |a CHNEW  |b 001028597 
029 1 |a CHVBK  |b 551280069 
029 1 |a GBVCP  |b 1048686337 
029 1 |a UKMGB  |b 019073665 
035 |a (OCoLC)1051777067  |z (OCoLC)1057376356  |z (OCoLC)1124310074  |z (OCoLC)1124363797  |z (OCoLC)1175639143 
037 |a 9781119501442  |b Wiley 
042 |a pcc 
050 1 0 |a QA276.8 
082 0 0 |a 519.5/44  |2 23 
049 |a UAMI 
100 1 |a Ogundare, John Olusegun,  |e author. 
245 1 0 |a Understanding least squares estimation and geomatics data analysis /  |c John Olusegun Ogundare. 
250 |a 1st edition. 
264 1 |a Hoboken, NJ :  |b John Wiley & Sons,  |c 2018. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record and CIP data provided by publisher. 
505 0 |a 1. Introduction -- 2. Analysis and error propagation of survey observations -- 3. Statistical distributions and hypothesis tests -- 4. Adjustment methods and concepts -- 5. Parametric least squares adjustment model formulation -- 6. Parametric least squares adjust applications -- 7. Confidence region estimation -- 8. Introduction to network design and preanalysis -- 9. Concepts of three-dimensional geodetic network adjustment -- 10. Nuisance parameter elimination and sequential adjustment -- 11. Post-adjustment data analysis and reliability concepts sensitivity -- 12. Least squares adjustment of conditional models -- 13. Least squares adjustment of general models -- 14. Datum problem and free network adjustment -- 15. Introduction to dynamic model filtering and prediction -- 16. Introduction to least squares collocation and the kriging method -- Appendix A. Extracts from Baarda's nomogram -- Appendix B. Standard statistical distribution tables -- Appendix C. Tau critical values table for significance level a (alpha) -- Appendix D. General partial differentials of typical survey observables -- Appendix E. some important matrix operations and identities -- Appendix F. Commonly used abbreviations. 
520 |a Provides a modern approach to least squares estimation and data analysis for undergraduate land surveying and geomatics programs. 
505 0 |a Intro; Title Page; Copyright Page; Contents; Preface; Acknowledgments; About the Author; About the Companion Website; Chapter 1 Introduction; 1.1 Observables and Observations; 1.2 Significant Digits of Observations; 1.3 Concepts of Observation Model; 1.4 Concepts of Stochastic Model; 1.4.1 Random Error Properties of Observations; 1.4.2 Standard Deviation of Observations; 1.4.3 Mean of Weighted Observations; 1.4.4 Precision of Observations; 1.4.5 Accuracy of Observations; 1.5 Needs for Adjustment; 1.6 Introductory Matrices; 1.6.1 Sums and Products of Matrices; 1.6.2 Vector Representation. 
505 8 |a 1.6.3 Basic Matrix Operations1.7 Covariance, Cofactor, and Weight Matrices; 1.7.1 Covariance and Cofactor Matrices; 1.7.2 Weight Matrices; Problems; Chapter 2 Analysis and Error Propagation of Survey Observations; 2.1 Introduction; 2.2 Model Equations Formulations; 2.3 Taylor Series Expansion of Model Equations; 2.3.1 Using MATLAB to Determine Jacobian Matrix; 2.4 Propagation of Systematic and Gross Errors; 2.5 Variance-Covariance Propagation; 2.6 Error Propagation Based on Equipment Specifications; 2.6.1 Propagation for Distance Based on Accuracy Specification. 
505 8 |a 2.6.2 Propagation for Direction (Angle) Based on Accuracy Specification2.6.3 Propagation for Height Difference Based on Accuracy Specification; 2.7 Heuristic Rule for Covariance Propagation; Problems; Chapter 3 Statistical Distributions and Hypothesis Tests; 3.1 Introduction; 3.2 Probability Functions; 3.2.1 Normal Probability Distributions and Density Functions; 3.3 Sampling Distribution; 3.3.1 Studentś t-Distribution; 3.3.2 Chi-square and Fisherś F-distributions; 3.4 Joint Probability Function; 3.5 Concepts of Statistical Hypothesis Tests; 3.6 Tests of Statistical Hypotheses. 
505 8 |a 3.6.1 Test of Hypothesis on a Single Population Mean3.6.2 Test of Hypothesis on Difference of Two Population Means; 3.6.3 Test of Measurements Against the Means; 3.6.4 Test of Hypothesis on a Population Variance; 3.6.5 Test of Hypothesis on Two Population Variances; Problems; Chapter 4 Adjustment Methods and Concepts; 4.1 Introduction; 4.2 Traditional Adjustment Methods; 4.2.1 Transit Rule Method of Adjustment; 4.2.2 Compass (Bowditch) Rule Method; 4.2.3 Crandallś Rule Method; 4.3 The Method of Least Squares; 4.3.1 Least Squares Criterion; 4.4 Least Squares Adjustment Model Types. 
505 8 |a 4.5 Least Squares Adjustment Steps4.6 Network Datum Definition and Adjustments; 4.6.1 Datum Defect and Configuration Defect; 4.7 Constraints in Adjustment; 4.7.1 Minimal Constraint Adjustments; 4.7.2 Overconstrained and Weight-Constrained Adjustments; 4.7.3 Adjustment Constraints Examples; 4.8 Comparison of Different Adjustment Methods; 4.8.1 General Discussions; Problems; Chapter 5 Parametric Least Squares Adjustment: Model Formulation; 5.1 Parametric Model Equation Formulation; 5.1.1 Distance Observable; 5.1.2 Azimuth and Horizontal (Total Station) Direction Observables. 
520 |a Provides a modern approach to least squares estimation and data analysis for undergraduate land surveying and geomatics programs Rich in theory and concepts, this comprehensive book on least square estimation and data analysis provides examples that are designed to help students extend their knowledge to solving more practical problems. The sample problems are accompanied by suggested solutions, and are challenging, yet easy enough to manually work through using simple computing devices, and chapter objectives provide an overview of the material contained in each section. Understanding Least Squares Estimation and Geomatics Data Analysis begins with an explanation of survey observables, observations, and their stochastic properties. It reviews matrix structure and construction and explains the needs for adjustment. Next, it discusses analysis and error propagation of survey observations, including the application of heuristic rule for covariance propagation. Then, the important elements of statistical distributions commonly used in geomatics are discussed. Main topics of the book include: concepts of datum definitions; the formulation and linearization of parametric, conditional and general model equations involving typical geomatics observables; geomatics problems; least squares adjustments of parametric, conditional and general models; confidence region estimation; problems of network design and pre-analysis; three-dimensional geodetic network adjustment; nuisance parameter elimination and the sequential least squares adjustment; post-adjustment data analysis and reliability; the problems of datum; mathematical filtering and prediction; an introduction to least squares collocation and the kriging methods; and more. ' -Contains ample concepts/theory and content, as well as practical and workable examples -Based on the author's manual, which he developed as a complete and comprehensive book for his Adjustment of Surveying Measurements and Special Topics in Adjustments courses -Provides geomatics undergraduates and geomatics professionals with required foundational knowledge -An excellent companion to Precision Surveying: The Principles and Geomatics Practice Understanding Least Squares Estimation and Geomatics Data Analysis is recommended for undergraduates studying geomatics, and will benefit many readers from a variety of geomatics backgrounds, including practicing surveyors/engineers who are interested in least squares estimation and data analysis, geomatics researchers, and software developers for geomatics. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Estimation theory. 
650 0 |a Least squares. 
650 6 |a Théorie de l'estimation. 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Estimation theory  |2 fast 
650 7 |a Least squares  |2 fast 
758 |i has work:  |a Understanding least squares estimation and geomatics data analysis (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGtKJKmxCBPFMTCVRkYYrm  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Ogundare, John Olusegun.  |t Understanding least squares estimation and geomatics data analysis.  |b 1st edition.  |d Hoboken, NJ : John Wiley & Sons, 2018  |z 9781119501398  |w (DLC) 2018033050 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5553520  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH34134571 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5553520 
938 |a Recorded Books, LLC  |b RECE  |n rbeEB00738720 
938 |a YBP Library Services  |b YANK  |n 15757719 
938 |a YBP Library Services  |b YANK  |n 15763130 
938 |a YBP Library Services  |b YANK  |n 15788051 
994 |a 92  |b IZTAP