Cargando…

Sigma-Delta Converters.

Thoroughly Revised and Expanded to Help Readers Systematically Increase Their Knowledge and Insight About Sigma-Delta Modulators Sigma-Delta Modulators "Ms" have become one of the best choices for the implementation of analog/digital interfaces of electronic systems integrated in CMOS tech...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: De la Rosa, José M.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Newark : John Wiley & Sons, Incorporated, 2018.
Edición:2nd ed.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Preface xix
  • Acknowledgements xxv
  • List of Abbreviations xxvii
  • 1 Introduction to ?? Modulators: Fundamentals, Basic Architecture and Performance Metrics 1
  • 1.1 Basics of Analog-to-Digital Conversion 2
  • 1.1.1 Sampling 3
  • 1.1.2 Quantization 4
  • 1.1.3 Quantization White Noise Model 5
  • 1.1.4 Noise Shaping 8
  • 1.2 Sigma-Delta Modulation 9
  • 1.2.1 From Noise-shaped Systems to Modulators 10
  • 1.2.2 Performance Metrics of Ms 11
  • 1.3 The First-order Modulator 13
  • 1.4 Performance Enhancement and Taxonomy of Ms 16
  • 1.4.1 M System-level Design Parameters and Strategies 17
  • 1.4.2 Classification of Ms 18
  • 1.5 Putting All The Pieces Together: From Ms to ADCs 19
  • 1.5.1 Some Words about Decimators 20
  • 1.6 DACs 22
  • 1.6.1 System Design Trade-offs and Signal Processing in DACs 22
  • 1.6.2 Implementation of Digital Ms used in DACs 24
  • 1.7 Summary 25
  • References 26
  • 2 Taxonomy of ?? Architectures 29
  • 2.1 Second-order Modulators 30
  • 2.1.1 Alternative Representations of Second-order Ms 31
  • 2.1.2 Second-Order M with Unity STF 34
  • 2.2 High-order Single-loop Ms 35
  • 2.3 Cascade Modulators 39
  • 2.3.1 SMASH M Architectures 46
  • 2.4 Multi-bit Modulators 49
  • 2.4.1 Influence of Multi-bit DAC Errors 49
  • 2.4.2 Dynamic Element Matching Techniques 50
  • 2.4.3 Dual Quantization 53
  • 2.4.3.1 Dual-quantization Single-loop Ms 53
  • 2.4.3.2 Dual-quantization Cascade Ms 54
  • 2.5 Band-pass Modulators 55
  • 2.5.1 Quadrature BP-Ms 56
  • 2.5.2 The z z2 LP-BP Transformation 58
  • 2.5.3 BP-Ms with Optimized NTF 58
  • 2.5.4 Time-interleaved and Polyphase BP-Ms 61.
  • 2.6 Continuous-time Modulators: Architecture and Basic Concepts 64
  • 2.6.1 An Intuitive Analysis of CT-Ms 66
  • 2.6.2 Some Words about Alias Rejection in CT-Ms 69
  • 2.7 DT-CT Transformation of Ms 70
  • 2.7.1 The Impulse-invariant Transformation 70
  • 2.7.2 DT-CT Transformation of a Second-order M 72
  • 2.8 Direct Synthesis of CT-Ms 74
  • 2.9 Summary 76
  • References 76
  • 3 Circuit Errors in Switched-capacitor ?? Modulators 83
  • 3.1 Overview of Nonidealities in Switched-capacitor Modulators 84
  • 3.2 Finite Amplifier Gain in SC-Ms 86
  • 3.3 Capacitor Mismatch in SC-Ms 90
  • 3.4 Integrator Settling Error in SC-Ms 91
  • 3.4.1 Behavioral Model for the Integrator Settling 91
  • 3.4.2 Linear Effect of Finite Amplifier Gain-Bandwidth Product 95
  • 3.4.3 Nonlinear Effect of Finite Amplifier Slew Rate 98
  • 3.4.4 Effect of Finite Switch On-resistance 100
  • 3.5 Circuit Noise in SC-Ms 101
  • 3.6 Clock Jitter in SC-Ms 105
  • 3.7 Sources of Distortion in SC-Ms 107
  • 3.7.1 Nonlinear Amplifier Gain 107
  • 3.7.2 Nonlinear Switch On-Resistance 109
  • 3.8 Case Study: High-level Sizing of a M 111
  • 3.8.1 Ideal Modulator Performance 111
  • 3.8.2 Noise Leakages 112
  • 3.8.3 Circuit Noise 115
  • 3.8.4 Settling Error 116
  • 3.8.5 Overall High-Level Sizing and Noise Budget 117
  • 3.9 Summary 119
  • References 119
  • 4 Circuit Errors and Compensation Techniques in Continuous-time ?? Modulators 123
  • 4.1 Overview of Nonidealities in Continuous-time Modulators 123
  • 4.2 CT Integrators and Resonators 124
  • 4.3 Finite Amplifier Gain in CT-Ms 126
  • 4.4 Time-constant Error in CT-Ms 128
  • 4.5 Finite Integrator Dynamics in CT-Ms 130
  • 4.5.1 Effect of Finite Gain-Bandwidth Product on CT-Ms 131.
  • 4.5.2 Effect of Finite Slew Rate on CT-Ms 133
  • 4.6 Sources of Distortion in CT-Ms 134
  • 4.6.1 Nonlinearities in the Front-end Integrator 134
  • 4.6.2 Intersymbol Interference in the Feedback DAC 136
  • 4.7 Circuit Noise in CT-Ms 137
  • 4.7.1 Noise Analysis Considering NRZ Feedback DACs 137
  • 4.7.2 Noise Analysis Considering SC Feedback DACs 139
  • 4.8 Clock Jitter in CT-Ms 140
  • 4.8.1 Jitter in Return-to-zero DACs 141
  • 4.8.2 Jitter in Non-return-to-zero DACs 142
  • 4.8.3 Jitter in Switched-capacitor DACs 144
  • 4.8.4 Lingering Effect of Clock Jitter Error 145
  • 4.8.5 Reducing the Effect of Clock Jitter with FIR and Sine-shaped DACs 147
  • 4.9 Excess Loop Delay in CT-Ms 149
  • 4.9.1 Intuitive Analysis of ELD 149
  • 4.9.2 Analysis of ELD based on Impulse-invariant DT-CT Transformation 151
  • 4.9.3 Alternative ELD Compensation Techniques 154
  • 4.10 Quantizer Metastability in CT-Ms 155
  • 4.11 Summary 159
  • References 160
  • 5 Behavioral Modeling and High-level Simulation 165
  • 5.1 Systematic Design Methodology of Modulators 165
  • 5.1.1 System Partitioning and Abstraction Levels 167
  • 5.1.2 Sizing Process 167
  • 5.2 Simulation Approaches for the High-level Evaluation of Ms 169
  • 5.2.1 Alternatives to Transistor-level Simulation 169
  • 5.2.2 Event-driven Behavioral Simulation Technique 171
  • 5.2.3 Programming Languages and Behavioral Modeling Platforms 172
  • 5.3 Implementing M Behavioral Models 173
  • 5.3.1 From Circuit Analysis to Computational Algorithms 173
  • 5.3.2 Time-domain versus Frequency-domain Behavioral Models 175
  • 5.3.3 Implementing Time-domain Behavioral Models in MATLAB 178
  • 5.3.4 Building Time-domain Behavioral Models as SIMULINK C-MEX S-functions 182
  • 5.4 Efficient Behavioral Modeling of M Building Blocks using C-MEX S-functions 188
  • 5.4.1 Modeling of SC Integrators using S-functions 188
  • 5.4.1.1 Capacitor Mismatch and Nonlinearity 190.
  • 5.4.1.2 Input-referred Thermal Noise 191
  • 5.4.1.3 Switch On-resistance Dynamics 194
  • 5.4.1.4 Incomplete Settling Error 197
  • 5.4.2 Modeling of CT Integrators using S-functions 200
  • 5.4.2.1 Single-pole Gm-C Model 200
  • 5.4.2.2 Two-pole Dynamics Model 201
  • 5.4.2.3 Modeling Transconductors as S-functions 203
  • 5.4.3 Behavioral Modeling of Quantizers using S-functions 205
  • 5.4.3.1 Modeling Multi-level ADCs as S-functions 205
  • 5.4.3.2 Modeling Multi-level DACs as S-functions 207
  • 5.5 SIMSIDES: A SIMULINK-based Behavioral Simulator for Ms 209
  • 5.5.1 Model Libraries Included in SIMSIDES 210
  • 5.5.2 Structure of SIMSIDES and its User Interface 211
  • 5.5.2.1 Creating a New M Block Diagram 212
  • 5.5.2.2 Setting Model Parameters 215
  • 5.5.2.3 Simulation Analyses 215
  • 5.6 Using SIMSIDES for High-level Sizing and Verification of Ms 216
  • 5.6.1 SC Second-order Single-Bit M 216
  • 5.6.1.1 Effect of Amplifier Finite DC Gain 218
  • 5.6.1.2 Effect of Thermal Noise 218
  • 5.6.1.3 Effect of the Incomplete Settling Error 220
  • 5.6.1.4 Cumulative Effect of All Errors 221
  • 5.6.2 CT Fifth-order Cascade 3-2 Multi-bit M 224
  • 5.6.2.1 Effect of Nonideal Effects 227
  • 5.6.2.2 High-level Synthesis and Verification 229
  • 5.7 Summary 231
  • References 231
  • 6 Automated Design and Optimization of ??Ms 235
  • 6.1 Architecture Exploration and Selection: Schreiers Toolbox 236
  • 6.1.1 Basic Functions of Schreiers Delta-Sigma Toolbox 236
  • 6.1.2 Synthesis of a Fourth-order CRFF LP/BP SC-M with Tunable Notch 238
  • 6.1.3 Synthesis of a Fourth-order BP CT-M with Tunable Notch 240
  • 6.2 Optimization-based High-level Synthesis of Modulators 245
  • 6.2.1 Combining Behavioral Simulation and Optimization 246
  • 6.2.2 Using Simulated Annealing as Optimization Engine 247
  • 6.2.3 Combining SIMSIDES with MATLAB Optimizers 253
  • 6.3 Lifting Method and Hardware Acceleration to Optimize CT-Ms 255.
  • 6.3.1 Hardware Emulation of CT-Ms on an FPGA 257
  • 6.3.2 GPU-accelerated Computing of CT-Ms 258
  • 6.4 Using Multi-objective Evolutionary Algorithms to Optimize Ms 259
  • 6.4.1 Combining MOEA with SIMSIDES 261
  • 6.4.2 Applying MOEA and SIMSIDES to the Synthesis of CT-Ms 262
  • 6.5 Summary 269
  • References 269
  • 7 Electrical Design of ??Ms: From Systems to Circuits 271
  • 7.1 Macromodeling Ms 272
  • 7.1.1 SC Integrator Macromodel 272
  • 7.1.1.1 Switch Macromodel 272
  • 7.1.1.2 OTA Macromodel 274
  • 7.1.2 CT Integrator Macromodel 274
  • 7.1.2.1 Active-RC Integrators 274
  • 7.1.2.2 Gm-C Integrators 274
  • 7.1.3 Nonlinear OTA Transconductor 275
  • 7.1.4 Embedded Flash ADC Macromodel 276
  • 7.1.5 Feedback DAC Macromodel 277
  • 7.2 Examples of M Macromodels 279
  • 7.2.1 SC Second-order Example 279
  • 7.2.2 Second-order Active-RC M 283
  • 7.3 Including Noise in Transient Electrical Simulations of Ms 286
  • 7.3.1 Generating and Injecting Noise Data Sequences in HSPICE 287
  • 7.3.2 Analyzing the Impact of the Main Noise Sources in SC Integrators 289
  • 7.3.3 Generating and Injecting Flicker Noise Sources in Electrical Simulations 289
  • 7.3.4 Test Bench to Include Noise in the Simulation of Ms 293
  • 7.4 Processing M Output Results of Electrical Simulations 294
  • 7.5 Summary 298
  • References 298
  • 8 Design Considerations of ??M Subcircuits 301
  • 8.1 Design Considerations of CMOS Switches 302
  • 8.1.1 Trade-Off Between Ron and the CMOS Switch Drain/Source Parasitic Capacitances 302
  • 8.1.2 Characterizing the Nonlinear Behavior of Ron 302
  • 8.1.3 Influence of Technology Downscaling on the Design of Switches 304
  • 8.1.4 Evaluating Harmonic Distortion due to CMOS Switches 305
  • 8.2 Design Considerations of Operational Amplifiers 308
  • 8.2.1 Typical Amplifier Topologies 309
  • 8.2.2 Common-mode Feedback Networks 311.
  • 8.2.3 Characterization of the Amplifier in AC 313
  • 8.2.4 Characterization of the Amplifier in DC 313
  • 8.2.5 Characterization of the Amplifier Gain Nonlinearity 316
  • 8.3 Design Considerations of Transconductors 317
  • 8.3.1 Highly Linear Front-end Transconductor 318
  • 8.3.2 Loop-filter Transconductors 320
  • 8.3.3 Widely Programmable Transconductors 323
  • 8.4 Design Considerations of Comparators 324
  • 8.4.1 Regenerative Latch-based Comparators 325
  • 8.4.2 Design Guidelines of Comparators 327
  • 8.4.3 Characterization of Offset and Hysteresis Based on the Input-ramp Method 328
  • 8.4.4 Characterization of Offset and Hysteresis Based on the Bisectional Method 328
  • 8.4.5 Characterizing the Comparison Time 330
  • 8.5 Design Considerations of Current-Steering DACs 332
  • 8.5.1 Fundamentals and Basic Concepts of CS DACs 333
  • 8.5.2 Practical Realization of CS DACs 333
  • 8.5.3 Current Cell Circuits, Error Limitations, and Design Criteria 336
  • 8.5.4 CS 4-bit DAC Example 336
  • 8.6 Summary 338
  • References 338
  • 9 Practical Realization of ??Ms: From Circuits to Chips 341
  • 9.1 Auxiliary M Building Blocks 341
  • 9.1.1 Clock-phase Generators 342
  • 9.1.1.1 Phase Generation 342
  • 9.1.1.2 Phase Buffering 342
  • 9.1.1.3 Phase Distribution 344
  • 9.1.2 Generation of Common-mode Voltage, Reference Voltage, and Bias Currents 345
  • 9.1.2.1 Bandgap Circuit 345
  • 9.1.2.2 Reference Voltage Generator 345
  • 9.1.2.3 Master Bias Current Generator 346
  • 9.1.2.4 Common-mode Voltage Generator 346
  • 9.1.3 Additional Digital Logic 347
  • 9.2 Layout Design, Floorplanning, and Practical Issues 348
  • 9.2.1 Layout Floorplanning 348
  • 9.2.1.1 Divide Layout into Different Parts or Regions 348
  • 9.2.1.2 Shield Sensitive M Analog Subcircuits from Switching Noise 349
  • 9.2.1.3 Buses to Distribute Signals Shared by Different M Parts 349
  • 9.2.1.4 Be Obsessive about Layout Symmetry and Details of Analog Parts 349
  • 9.2.2 I/O Pad Ring 350.
  • 9.2.3 Importance of Layout Verification and Catastrophic Failure 350
  • 9.3 Chip Package, Test PCB, and Experimental Setup 354
  • 9.3.1 Bonding Diagram and Package 354
  • 9.3.2 Test PCB 355
  • 9.4 Experimental Test Set-Up 355
  • 9.4.1 Planning the Type and Number of Instruments Needed 357
  • 9.4.2 Connecting Lab Instruments 357
  • 9.4.3 Measurement Set-Up Example 358
  • 9.5 M Design Examples and Case Studies 359
  • 9.5.1 Programmable-gain Ms for High Dynamic Range Sensor Interfaces 360
  • 9.5.1.1 Main Design Criteria and Performance Limitations 361
  • 9.5.1.2 SC Realization with Programmable Gain and Double Sampling 362
  • 9.5.1.3 Influence of Chopper Frequency on Flicker Noise 362
  • 9.5.2 Reconfigurable SC-Ms for Multi-standard Direct Conversion Receivers 364
  • 9.5.2.1 Power-scaling Circuit Techniques 367
  • 9.5.2.2 Experimental Results 368
  • 9.5.3 Using Widely-programmable Gm-LC BP-Ms for RF Digitizers 368
  • 9.5.3.1 Application Scenario 371
  • 9.5.3.2 Gm-LC BP-M High-level Sizing 371
  • 9.5.3.3 BP CT-M Loop-Filter Reconfiguration Techniques 375
  • 9.5.3.4 Embedded 4-bit Quantizer with Calibration 378
  • 9.5.3.5 Biasing, Digital Control Programmability and Testability 382
  • 9.6 Summary 385
  • References 386
  • 10 Frontiers, Trends and Challenges: Towards Next-generation ?? Modulators 389
  • 10.1 State-of-the-Art ADCs: Nyquist-rate versus Converters 390
  • 10.1.1 Conversion Energy 391
  • 10.1.2 Figures of Merit 392
  • 10.2 Comparison of Different Categories of ADCs 393
  • 10.2.1 Aperture Plot of Ms 406
  • 10.2.2 Energy Plot of Ms 407
  • 10.3 Empirical and Statistical Analysis of State-of-the-Art Ms 408
  • 10.3.1 SC versus CT Ms 408
  • 10.3.2 Technology used in State-of-the-Art Ms 410
  • 10.3.3 Single-Loop versus Cascade Ms 410
  • 10.3.4 Single-bit versus Multi-bit Ms 411.
  • 10.3.5 Low-pass versus Band-pass Ms 413
  • 10.3.6 Emerging M Techniques 415
  • 10.4 Gigahertz-range Ms for RF-to-digital Conversion 415
  • 10.5 Enhanced Cascade Ms 418
  • 10.5.1 SMASH CT-Ms 418
  • 10.5.2 Two-stage 0-L MASH 419
  • 10.5.3 Stage-sharing Cascade Ms 420
  • 10.5.4 Multi-rate and Hybrid CT/DT Ms 420
  • 10.5.4.1 Upsampling Cascade MR-Ms 421
  • 10.5.4.2 Downsampling Hybrid CT/DT Cascade MR-Ms 422
  • 10.6 Power-efficient M Loop-filter Techniques 423
  • 10.6.1 Inverter-based Ms 423
  • 10.6.2 Hybrid Active/Passive and Amplifier-less Ms 424
  • 10.6.3 Power-efficient Amplifier Techniques 426
  • 10.7 Hybrid M/Nyquist-rate ADCs 428
  • 10.7.1 Multi-bit M Quantizers based on Nyquist-rate ADCs 428
  • 10.7.2 Incremental ADCs 429
  • 10.8 Time-based ADCs 431
  • 10.8.1 Ms with VCO/PWM-based Quantization 432
  • 10.8.2 Scaling-friendly Mostly-digital Ms 433
  • 10.8.3 GRO-based Ms 434
  • 10.9 DAC Techniques for High-performance CT-Ms 436
  • 10.10 Classification of State-of-the-Art References 437
  • 10.11 Summary and Conclusions 437
  • References 438
  • A State-space Analysis of Clock Jitter in CT-??Ms 463
  • A.1 State-space Representation of NTF (z) 463
  • A.2 Expectation Value of (qn)2 465
  • A.3 In-band Noise Power due to Clock Jitter 466
  • References 467
  • B SIMSIDES User Guide 469
  • B.1 Getting Started: Installing and Running SIMSIDES 470
  • B.2 Building and Editing M Architectures in SIMSIDES 470
  • B.3 Analyzing Ms in SIMSIDES 473
  • B.3.1 Node Spectrum Analysis 474
  • B.3.2 Integrated Power Noise 474
  • B.3.3 SNR/SNDR 475
  • B.3.4 Harmonic Distortion 475
  • B.3.5 Integral and Differential Non-Linearity 477
  • B.3.6 Multi-tone Power Ratio 477.
  • B.3.7 Histogram 478
  • B.3.8 Parametric Analysis 478
  • B.3.9 Monte Carlo Analysis 479
  • B.4 Optimization Interface 480
  • B.5 Tutorial Example: Using SIMSIDES to Model and Analyze Ms 482
  • B.5.1 Creating the Cascade 2-1 M Block Diagram in SIMSIDES 482
  • B.5.2 Setting Model Parameters 482
  • B.5.3 Computing the Output Spectrum 484
  • B.5.4 SNR versus Input Amplitude Level 486
  • B.5.5 Parametric Analysis Considering Only One Parameter 487
  • B.5.6 Parametric Analysis Considering Two Parameters 488
  • B.5.7 Computing Histograms 489
  • B.6 Getting Help 489
  • C SIMSIDES Block Libraries and Models 491
  • C.1 Overview of SIMSIDES Libraries 491
  • C.2 Ideal Libraries 492
  • C.2.1 Ideal Integrators 492
  • C.2.1.1 Building-block Model Purpose and Description 492
  • C.2.1.2 Model Parameters 493
  • C.2.2 Ideal Resonators 493
  • C.2.2.1 Ideal_LD_Resonator 493
  • C.2.2.2 Ideal_FE_Resonator 493
  • C.2.2.3 Ideal_CT_Resonator 493
  • C.2.3 Ideal Quantizers 494
  • C.2.3.1 Ideal_Comparator 494
  • C.2.3.2 Ideal_Comparator_for_SI 495
  • C.2.3.3 Ideal_Multibit_Quantizer 495
  • C.2.3.4 Ideal_Multibit_Quantizer_for_SI 496
  • C.2.3.5 Ideal_Multibit_Quantizer_levels 496
  • C.2.3.6 Ideal_Multibit_Quantizer_levels_SD2 496
  • C.2.3.7 Ideal_Sampler 496
  • C.2.4 Ideal D/A Converters 496
  • C.2.4.1 Ideal_DAC_for_SI 496
  • C.2.4.2 Ideal_DAC_dig_level_SD2 497
  • C.3 Real SC Building-Block Libraries 497
  • C.3.1 Real SC Integrators 497
  • C.3.2 Real SC Resonators 501
  • C.4 Real SI Building-Block Libraries 503
  • C.4.1 Real SI Integrators 503
  • C.4.2 Real SI Resonators 505
  • C.4.3 SI Errors and Model Parameters 506
  • C.4.3.1 Basic_SI_FE(LD)_Integrator and Basic_SI_FE(LD)_Resonator 506
  • C.4.3.2 SI_FE(LD)_Int_Finite_Conductance 507
  • C.4.3.3 SI_FE(LD)_Int_Finite_Conductance & Settling & ChargeInjection 508
  • C.5 Real CT Building-Block Libraries 508
  • C.5.1 Real CT Integrators 508
  • C.5.1.1 Model Parameters used in Transconductors and Gm-C Integrator Building Blocks 511.
  • C.5.1.2 Gm-MC Integrators 511
  • C.5.1.3 Active-RC Integrators 512
  • C.5.1.4 MOSFET-C Integrators 513
  • C.5.2 Real CT Resonators 513
  • C.5.2.1 Gm-C Resonators 514
  • C.5.2.2 Gm-LC Resonators 517
  • C.6 Real Quantizers & Comparators 517
  • C.7 Real D/A Converters 518
  • C.8 Auxiliary Blocks 519
  • Index 523.