|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
EBOOKCENTRAL_on1048799933 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n|---||||| |
008 |
180818s2018 enk o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d YDX
|d MERUC
|d CHVBK
|d OCLCQ
|d LVT
|d OCLCQ
|d UX1
|d OCLCF
|d K6U
|d NLW
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 1048129351
|a 1175621360
|
020 |
|
|
|a 9781788993067
|
020 |
|
|
|a 1788993063
|
020 |
|
|
|a 9781788993494
|
020 |
|
|
|a 1788993497
|q (Trade Paper)
|
024 |
3 |
|
|a 9781788993494
|
029 |
1 |
|
|a AU@
|b 000065313281
|
029 |
1 |
|
|a CHNEW
|b 001024201
|
029 |
1 |
|
|a CHVBK
|b 530305119
|
035 |
|
|
|a (OCoLC)1048799933
|z (OCoLC)1048129351
|z (OCoLC)1175621360
|
037 |
|
|
|a B10786
|b 01201872
|
050 |
|
4 |
|a QA76.9.N38
|b .R447 2018
|
082 |
0 |
4 |
|a 006.35
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a M. Reese, Richard.
|
245 |
1 |
0 |
|a Natural Language Processing with Java :
|b Techniques for Building Machine Learning and Neural Network Models for NLP, 2nd Edition.
|
250 |
|
|
|a 2nd ed.
|
260 |
|
|
|a Birmingham :
|b Packt Publishing Ltd,
|c 2018.
|
300 |
|
|
|a 1 online resource (308 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Cover; Title Page; Copyright and Credits; Dedication; Packt Upsell; Contributors; Table of Contents; Preface; Chapter 1: Introduction to NLP; What is NLP?; Why use NLP?; Why is NLP so hard?; Survey of NLP tools; Apache OpenNLP; Stanford NLP; LingPipe; GATE; UIMA; Apache Lucene Core; Deep learning for Java; Overview of text-processing tasks; Finding parts of text; Finding sentences; Feature-engineering; Finding people and things; Detecting parts of speech; Classifying text and documents; Extracting relationships; Using combined approaches; Understanding NLP models; Identifying the task.
|
505 |
8 |
|
|a Selecting a modelBuilding and training the model; Verifying the model; Using the model; Preparing data; Summary; Chapter 2: Finding Parts of Text; Understanding the parts of text; What is tokenization?; Uses of tokenizers; Simple Java tokenizers; Using the Scanner class; Specifying the delimiter; Using the split method; Using the BreakIterator class; Using the StreamTokenizer class; Using the StringTokenizer class; Performance considerations with Java core tokenization; NLP tokenizer APIs; Using the OpenNLPTokenizer class; Using the SimpleTokenizer class; Using the WhitespaceTokenizer class.
|
505 |
8 |
|
|a Using the TokenizerME classUsing the Stanford tokenizer; Using the PTBTokenizer class; Using the DocumentPreprocessor class; Using a pipeline; Using LingPipe tokenizers; Training a tokenizer to find parts of text; Comparing tokenizers; Understanding normalization; Converting to lowercase; Removing stopwords; Creating a StopWords class; Using LingPipe to remove stopwords; Using stemming; Using the Porter Stemmer; Stemming with LingPipe; Using lemmatization; Using the StanfordLemmatizer class; Using lemmatization in OpenNLP; Normalizing using a pipeline; Summary; Chapter 3: Finding Sentences.
|
505 |
8 |
|
|a The SBD processWhat makes SBD difficult?; Understanding the SBD rules of LingPipe's HeuristicSentenceModel class; Simple Java SBDs; Using regular expressions; Using the BreakIterator class; Using NLP APIs; Using OpenNLP; Using the SentenceDetectorME class; Using the sentPosDetect method; Using the Stanford API; Using the PTBTokenizer class; Using the DocumentPreprocessor class; Using the StanfordCoreNLP class; Using LingPipe; Using the IndoEuropeanSentenceModel class; Using the SentenceChunker class; Using the MedlineSentenceModel class; Training a sentence-detector model.
|
505 |
8 |
|
|a Using the Trained modelEvaluating the model using the SentenceDetectorEvaluator class; Summary; Chapter 4: Finding People and Things; Why is NER difficult?; Techniques for name recognition; Lists and regular expressions; Statistical classifiers; Using regular expressions for NER; Using Java's regular expressions to find entities; Using the RegExChunker class of LingPipe; Using NLP APIs; Using OpenNLP for NER; Determining the accuracy of the entity; Using other entity types; Processing multiple entity types; Using the Stanford API for NER; Using LingPipe for NER.
|
500 |
|
|
|a Using LingPipe's named entity models.
|
520 |
|
|
|a Natural Language Processing with Java will explore how to automatically organize text using approaches such as full-text search, proper name recognition, clustering, tagging, information extraction, and summarization. You will leverage the power of Java to extract relationships within different elements of text and documents.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Natural language processing.
|
650 |
|
0 |
|a Java.
|
650 |
|
7 |
|a Natural language & machine translation.
|2 bicssc
|
650 |
|
7 |
|a Neural networks & fuzzy systems.
|2 bicssc
|
650 |
|
7 |
|a Programming & scripting languages: general.
|2 bicssc
|
650 |
|
7 |
|a Computers
|x Natural Language Processing.
|2 bisacsh
|
650 |
|
7 |
|a Computers
|x Neural Networks.
|2 bisacsh
|
650 |
|
7 |
|a Computers
|x Programming Languages
|x Java.
|2 bisacsh
|
650 |
|
7 |
|a Java (Computer program language)
|2 fast
|
650 |
|
7 |
|a Machine learning
|2 fast
|
650 |
|
7 |
|a Natural language processing (Computer science)
|2 fast
|
650 |
|
7 |
|a Neural networks (Computer science)
|2 fast
|
700 |
1 |
|
|a Bhatia, AshishSingh.
|
758 |
|
|
|i has work:
|a Natural language processing with Java (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGHYtcFCwJBCbB4WbHYK8d
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a M. Reese, Richard.
|t Natural Language Processing with Java : Techniques for Building Machine Learning and Neural Network Models for NLP, 2nd Edition.
|d Birmingham : Packt Publishing Ltd, ©2018
|z 9781788993494
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5485028
|z Texto completo
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL5485028
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 15625726
|
994 |
|
|
|a 92
|b IZTAP
|