Cargando…

Hands-On Ensemble Learning with R : a Beginner's Guide to Combining the Power of Machine Learning Algorithms Using Ensemble Techniques.

Chapter 8: Ensemble Diagnostics; Technical requirements; What is ensemble diagnostics?; Ensemble diversity; Numeric prediction; Class prediction; Pairwise measure; Disagreement measure; Yule's or Q-statistic; Correlation coefficient measure; Cohen's statistic; Double-fault measure; Interra...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Tattar, Prabhanjan Narayanachar
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing Ltd, 2018.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_on1048793117
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 180818s2018 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d MERUC  |d CHVBK  |d IDB  |d OCLCO  |d OCLCF  |d OCLCQ  |d UKAHL  |d OCLCQ  |d UX1  |d K6U  |d NLW  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 1175631865 
020 |a 9781788629171 
020 |a 1788629175 
020 |a 9781788624145 
020 |a 1788624149  |q (Trade Paper) 
024 3 |a 9781788624145 
029 1 |a AU@  |b 000066230910 
029 1 |a CHNEW  |b 001024161 
029 1 |a CHVBK  |b 530304716 
035 |a (OCoLC)1048793117  |z (OCoLC)1175631865 
037 |a B09012  |b 01201872 
050 4 |a QA276.45.R3  |b .T388 2018 
082 0 4 |a 519.502855133  |2 23 
049 |a UAMI 
100 1 |a Tattar, Prabhanjan Narayanachar. 
245 1 0 |a Hands-On Ensemble Learning with R :  |b a Beginner's Guide to Combining the Power of Machine Learning Algorithms Using Ensemble Techniques. 
260 |a Birmingham :  |b Packt Publishing Ltd,  |c 2018. 
300 |a 1 online resource (376 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Cover; Copyright; Contributors; Table of Contents; Preface; Chapter 1: Introduction to Ensemble Techniques; Datasets; Hypothyroid; Waveform; German Credit; Iris; Pima Indians Diabetes; US Crime; Overseas visitors; Primary Biliary Cirrhosis; Multishapes; Board Stiffness; Statistical/machine learning models; Logistic regression model; Logistic regression for hypothyroid classification; Neural networks; Neural network for hypothyroid classification; Naïve Bayes classifier; Naïve Bayes for hypothyroid classification; Decision tree; Decision tree for hypothyroid classification. 
505 8 |a Support vector machinesSVM for hypothyroid classification; The right model dilemma!; An ensemble purview; Complementary statistical tests; Permutation test; Chi-square and McNemar test; ROC test; Summary; Chapter 2: Bootstrapping; Technical requirements; The jackknife technique; The jackknife method for mean and variance; Pseudovalues method for survival data; Bootstrap -- a statistical method; The standard error of correlation coefficient; The parametric bootstrap; Eigen values; Rule of thumb; The boot package; Bootstrap and testing hypotheses; Bootstrapping regression models. 
505 8 |a Bootstrapping survival models*Bootstrapping time series models*; Summary; Chapter 3: Bagging; Technical requirements; Classification trees and pruning; Bagging; k-NN classifier; Analyzing waveform data; k-NN bagging; Summary; Chapter 4: Random Forests; Technical requirements; Random Forests; Variable importance; Proximity plots; Random Forest nuances; Comparisons with bagging; Missing data imputation; Clustering with Random Forest; Summary; Chapter 5: The Bare Bones Boosting Algorithms; Technical requirements; The general boosting algorithm; Adaptive boosting; Gradient boosting. 
505 8 |a Building it from scratchSquared-error loss function; Using the adabag and gbm packages; Variable importance; Comparing bagging, random forests, and boosting; Summary; Chapter 6: Boosting Refinements; Technical requirements; Why does boosting work?; The gbm package; Boosting for count data; Boosting for survival data; The xgboost package; The h2o package; Summary; Chapter 7: The General Ensemble Technique; Technical requirements; Why does ensembling work?; Ensembling by voting; Majority voting; Weighted voting; Ensembling by averaging; Simple averaging; Weight averaging; Stack ensembling. 
520 |a Chapter 8: Ensemble Diagnostics; Technical requirements; What is ensemble diagnostics?; Ensemble diversity; Numeric prediction; Class prediction; Pairwise measure; Disagreement measure; Yule's or Q-statistic; Correlation coefficient measure; Cohen's statistic; Double-fault measure; Interrating agreement; Entropy measure; Kohavi-Wolpert measure; Disagreement measure for ensemble; Measurement of interrater agreement; Summary; Chapter 9: Ensembling Regression Models; Technical requirements; Pre-processing the housing data; Visualization and variable reduction; Variable clustering. 
500 |a Regression models. 
520 |a This book introduces you to the concept of ensemble learning and demonstrates how different machine learning algorithms can be combined to build efficient machine learning models. Use R to implement the popular trilogy of ensemble techniques, i.e. bagging, random forest and boosting, to build faster and more accurate machine learning models. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a R. 
650 0 |a Machine learning. 
650 0 |a Computer algorithms. 
650 2 |a Algorithms 
650 2 |a Machine Learning 
650 6 |a Apprentissage automatique. 
650 6 |a Algorithmes. 
650 7 |a algorithms.  |2 aat 
650 7 |a Data capture & analysis.  |2 bicssc 
650 7 |a Mathematical theory of computation.  |2 bicssc 
650 7 |a Machine learning.  |2 bicssc 
650 7 |a Artificial intelligence.  |2 bicssc 
650 7 |a Computers  |x Data Processing.  |2 bisacsh 
650 7 |a Computers  |x Machine Theory.  |2 bisacsh 
650 7 |a Computers  |x Intelligence (AI) & Semantics.  |2 bisacsh 
650 7 |a Computer algorithms  |2 fast 
650 7 |a Machine learning  |2 fast 
758 |i has work:  |a Hands-on ensemble learning with R (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFVxkJQXtfhxX3W9cp8yFq  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Tattar, Prabhanjan Narayanachar.  |t Hands-On Ensemble Learning with R : A Beginner's Guide to Combining the Power of Machine Learning Algorithms Using Ensemble Techniques.  |d Birmingham : Packt Publishing Ltd, ©2018  |z 9781788624145 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5482822  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n BDZ0037625901 
938 |a EBL - Ebook Library  |b EBLB  |n EBL5482822 
994 |a 92  |b IZTAP