Cargando…

Statistical Inference for Piecewise-Deterministic Markov Processes.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Azais, Romain
Otros Autores: Bouguet, Florian
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Newark : John Wiley & Sons, Incorporated, 2018.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_on1048789160
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 180811s2018 nju o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d YDX  |d OCLCQ  |d DEBBG  |d OCLCQ  |d BWN  |d OCLCO  |d OCLCF  |d OCLCO  |d K6U  |d OCLCQ  |d OCLCO 
019 |a 1047788017  |a 1048947511  |a 1049790004 
020 |a 9781119544098 
020 |a 1119544092 
020 |z 1786303027 
020 |z 9781786303028 
035 |a (OCoLC)1048789160  |z (OCoLC)1047788017  |z (OCoLC)1048947511  |z (OCoLC)1049790004 
050 4 |a QA274.7  |b .S738 2018 
082 0 4 |a 519.233  |2 23 
049 |a UAMI 
100 1 |a Azais, Romain. 
245 1 0 |a Statistical Inference for Piecewise-Deterministic Markov Processes. 
260 |a Newark :  |b John Wiley & Sons, Incorporated,  |c 2018. 
300 |a 1 online resource (305 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Cover; Half-Title Page; Series Page; Title Page; Copyright Page; Contents; Preface; List of Acronyms; Introduction; 1. Statistical Analysis for Structured Models on Trees; 1.1. Introduction; 1.1.1. Motivation; 1.1.2. Genealogical versus temporal data; 1.2. Size-dependent division rate; 1.2.1. From partial differential equation to stochastic models; 1.2.2. Non-parametric estimation: the Markov tree approach; 1.2.3. Sketch of proof of Theorem 1.1; 1.3. Estimating the age-dependent division rate; 1.3.1. Heuristics and convergence of empirical measures; 1.3.2. Estimation results. 
505 8 |a 1.3.3. Sketch of proof of Theorem 1.41.4. Bibliography; 2. Regularity of the Invariant Measure and Non-parametric Estimation of the Jump Rate; 2.1. Introduction; 2.2. Absolute continuity of the invariant measure; 2.2.1. The dynamics; 2.2.2. An associated Markov chain and its invariant measure; 2.2.3. Smoothness of the invariant density of a single particle; 2.2.4. Lebesgue density in dimension N; 2.3. Estimation of the spiking rate in systems of interacting neurons; 2.3.1. Harris recurrence; 2.3.2. Properties of the estimator; 2.3.3. Simulation results; 2.4. Bibliography. 
505 8 |a 3. Level Crossings and Absorption of an Insurance Model3.1. An insurance model; 3.2. Some results about the crossing and absorption features; 3.2.1. Transition density of the post-jump locations; 3.2.2. Absorption time and probability; 3.2.3. Kac-Rice formula; 3.3. Inference for the absorption features of the process; 3.3.1. Semi-parametric framework; 3.3.2. Estimators and convergence results; 3.3.3. Numerical illustration; 3.4. Inference for the average number of crossings; 3.4.1. Estimation procedures; 3.4.2. Numerical application; 3.5. Some additional proofs; 3.5.1. Technical lemmas. 
505 8 |a 3.5.2. Proof of Proposition 3.33.5.3. Proof of Corollary 3.2; 3.5.4. Proof of Theorem 3.5; 3.5.5. Proof of Theorem 3.6; 3.5.6. Discussion on the condition (CG2); 3.6. Bibliography; 4. Robust Estimation for Markov Chains with Applications to Piecewise-deterministic Markov Processes; 4.1. Introduction; 4.2. (Pseudo)-regenerative Markov chains; 4.2.1. General Harris Markov chains and the splitting technique; 4.2.2. Regenerative blocks for dominated families; 4.2.3. Construction of regeneration blocks; 4.3. Robust functional parameter estimation for Markov chains. 
505 8 |a 4.3.1. The influence function on the torus4.3.2. Example 1: sample means; 4.3.3. Example 2: M-estimators; 4.3.4. Example 3: quantiles; 4.4. Central limit theorem for functionals of Markov chains and robustness; 4.5. A Markov view for estimators in PDMPs; 4.5.1. Example 1: Sparre Andersen model with barrier; 4.5.2. Example 2: kinetic dietary exposure model; 4.6. Robustness for risk PDMP models; 4.6.1. Stationary measure; 4.6.2. Ruin probability; 4.6.3. Extremal index; 4.6.4. Expected shortfall; 4.7. Simulations; 4.8. Bibliography. 
500 |a 5. Numerical Method for Control of Piecewise-deterministic Markov Processes. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Markov processes. 
650 6 |a Processus de Markov. 
650 7 |a Markov processes  |2 fast 
700 1 |a Bouguet, Florian. 
776 0 8 |i Print version:  |a Azais, Romain.  |t Statistical Inference for Piecewise-Deterministic Markov Processes.  |d Newark : John Wiley & Sons, Incorporated, ©2018  |z 9781786303028 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5484224  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5484224 
938 |a YBP Library Services  |b YANK  |n 15623004 
938 |a YBP Library Services  |b YANK  |n 15644799 
994 |a 92  |b IZTAP