|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
EBOOKCENTRAL_on1048789160 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n|---||||| |
008 |
180811s2018 nju o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d YDX
|d OCLCQ
|d DEBBG
|d OCLCQ
|d BWN
|d OCLCO
|d OCLCF
|d OCLCO
|d K6U
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 1047788017
|a 1048947511
|a 1049790004
|
020 |
|
|
|a 9781119544098
|
020 |
|
|
|a 1119544092
|
020 |
|
|
|z 1786303027
|
020 |
|
|
|z 9781786303028
|
035 |
|
|
|a (OCoLC)1048789160
|z (OCoLC)1047788017
|z (OCoLC)1048947511
|z (OCoLC)1049790004
|
050 |
|
4 |
|a QA274.7
|b .S738 2018
|
082 |
0 |
4 |
|a 519.233
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Azais, Romain.
|
245 |
1 |
0 |
|a Statistical Inference for Piecewise-Deterministic Markov Processes.
|
260 |
|
|
|a Newark :
|b John Wiley & Sons, Incorporated,
|c 2018.
|
300 |
|
|
|a 1 online resource (305 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Cover; Half-Title Page; Series Page; Title Page; Copyright Page; Contents; Preface; List of Acronyms; Introduction; 1. Statistical Analysis for Structured Models on Trees; 1.1. Introduction; 1.1.1. Motivation; 1.1.2. Genealogical versus temporal data; 1.2. Size-dependent division rate; 1.2.1. From partial differential equation to stochastic models; 1.2.2. Non-parametric estimation: the Markov tree approach; 1.2.3. Sketch of proof of Theorem 1.1; 1.3. Estimating the age-dependent division rate; 1.3.1. Heuristics and convergence of empirical measures; 1.3.2. Estimation results.
|
505 |
8 |
|
|a 1.3.3. Sketch of proof of Theorem 1.41.4. Bibliography; 2. Regularity of the Invariant Measure and Non-parametric Estimation of the Jump Rate; 2.1. Introduction; 2.2. Absolute continuity of the invariant measure; 2.2.1. The dynamics; 2.2.2. An associated Markov chain and its invariant measure; 2.2.3. Smoothness of the invariant density of a single particle; 2.2.4. Lebesgue density in dimension N; 2.3. Estimation of the spiking rate in systems of interacting neurons; 2.3.1. Harris recurrence; 2.3.2. Properties of the estimator; 2.3.3. Simulation results; 2.4. Bibliography.
|
505 |
8 |
|
|a 3. Level Crossings and Absorption of an Insurance Model3.1. An insurance model; 3.2. Some results about the crossing and absorption features; 3.2.1. Transition density of the post-jump locations; 3.2.2. Absorption time and probability; 3.2.3. Kac-Rice formula; 3.3. Inference for the absorption features of the process; 3.3.1. Semi-parametric framework; 3.3.2. Estimators and convergence results; 3.3.3. Numerical illustration; 3.4. Inference for the average number of crossings; 3.4.1. Estimation procedures; 3.4.2. Numerical application; 3.5. Some additional proofs; 3.5.1. Technical lemmas.
|
505 |
8 |
|
|a 3.5.2. Proof of Proposition 3.33.5.3. Proof of Corollary 3.2; 3.5.4. Proof of Theorem 3.5; 3.5.5. Proof of Theorem 3.6; 3.5.6. Discussion on the condition (CG2); 3.6. Bibliography; 4. Robust Estimation for Markov Chains with Applications to Piecewise-deterministic Markov Processes; 4.1. Introduction; 4.2. (Pseudo)-regenerative Markov chains; 4.2.1. General Harris Markov chains and the splitting technique; 4.2.2. Regenerative blocks for dominated families; 4.2.3. Construction of regeneration blocks; 4.3. Robust functional parameter estimation for Markov chains.
|
505 |
8 |
|
|a 4.3.1. The influence function on the torus4.3.2. Example 1: sample means; 4.3.3. Example 2: M-estimators; 4.3.4. Example 3: quantiles; 4.4. Central limit theorem for functionals of Markov chains and robustness; 4.5. A Markov view for estimators in PDMPs; 4.5.1. Example 1: Sparre Andersen model with barrier; 4.5.2. Example 2: kinetic dietary exposure model; 4.6. Robustness for risk PDMP models; 4.6.1. Stationary measure; 4.6.2. Ruin probability; 4.6.3. Extremal index; 4.6.4. Expected shortfall; 4.7. Simulations; 4.8. Bibliography.
|
500 |
|
|
|a 5. Numerical Method for Control of Piecewise-deterministic Markov Processes.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Markov processes.
|
650 |
|
6 |
|a Processus de Markov.
|
650 |
|
7 |
|a Markov processes
|2 fast
|
700 |
1 |
|
|a Bouguet, Florian.
|
776 |
0 |
8 |
|i Print version:
|a Azais, Romain.
|t Statistical Inference for Piecewise-Deterministic Markov Processes.
|d Newark : John Wiley & Sons, Incorporated, ©2018
|z 9781786303028
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5484224
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL5484224
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 15623004
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 15644799
|
994 |
|
|
|a 92
|b IZTAP
|