Cargando…

Big data analytics for large-scale multimedia search /

"A timely overview of cutting edge technologies for multimedia retrieval with a special emphasis on scalability. The amount of multimedia data available every day is enormous and is growing at an exponential rate, creating a great need for new and more efficient approaches for large scale multi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Vrochidis, Stefanos, 1975- (Autor), Huet, Benoit (Autor), Chang, Edward Y. (Autor), Kompatsiaris, Yiannis (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, NJ, USA : Wiley, [2018]
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_on1048047326
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 180804t20182019nju ob 001 0 eng
010 |a  2018037546 
040 |a DLC  |b eng  |e rda  |c DLC  |d OCLCF  |d DG1  |d N$T  |d EBLCP  |d UKMGB  |d UWW  |d COO  |d DLC  |d OCLCO  |d UKAHL  |d UX1  |d VT2  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
015 |a GBB956590  |2 bnb 
016 7 |a 019327505  |2 Uk 
019 |a 1100448615  |a 1175642953  |a 1181905240 
020 |a 9781119376989  |q (Adobe PDF) 
020 |a 111937698X 
020 |a 9781119377009  |q (ePub) 
020 |a 1119377005 
020 |z 9781119376972 (hardcover) 
020 |a 9781119376996  |q (electronic bk.) 
020 |a 1119376998  |q (electronic bk.) 
020 |a 1119376971 
020 |a 9781119376972 
029 1 |a UKMGB  |b 019327505 
029 1 |a CHVBK  |b 565571613 
029 1 |a CHNEW  |b 001048762 
029 1 |a AU@  |b 000063820694 
029 1 |a AU@  |b 000072984829 
035 |a (OCoLC)1048047326  |z (OCoLC)1100448615  |z (OCoLC)1175642953  |z (OCoLC)1181905240 
037 |a 9781119377009  |b Wiley 
042 |a pcc 
050 0 0 |a QA76.9.D343 
072 7 |a COM  |x 021030  |2 bisacsh 
082 0 0 |a 005.7  |2 23 
049 |a UAMI 
100 1 |a Vrochidis, Stefanos,  |d 1975-  |e author. 
245 1 0 |a Big data analytics for large-scale multimedia search /  |c Stefanos Vrochidis, Information Technologies Institute, Centre for Research and Technology Hellas, Thessaloniki, Greece, Benoit B. Huet, EURECOM, Sophia-Antipolis, France, Edward Y. Chang, HTC Research & Healthcare San Francisco, USA, Ioannis Kompatsiaris, Information Technologies Institute, Centre for Research and Technology Hellas, Thessaloniki, Greece. 
263 |a 1812 
264 1 |a Hoboken, NJ, USA :  |b Wiley,  |c [2018] 
264 4 |c ©2019 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b n  |2 rdamedia 
338 |a online resource  |b nc  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 |a Description based on print version record and CIP data provided by publisher; resource not viewed. 
505 0 |a Cover; Title Page; Copyright; Contents; Introduction; List of Contributors; About the Companion Website; Part I Feature Extraction from Big Multimedia Data; Chapter 1 Representation Learning on Large and Small Data; 1.1 Introduction; 1.2 Representative Deep CNNs; 1.2.1 AlexNet; 1.2.1.1 ReLU Nonlinearity; 1.2.1.2 Data Augmentation; 1.2.1.3 Dropout; 1.2.2 Network in Network; 1.2.2.1 MLP Convolutional Layer; 1.2.2.2 Global Average Pooling; 1.2.3 VGG; 1.2.3.1 Very Small Convolutional Filters; 1.2.3.2 Multi-scale Training; 1.2.4 GoogLeNet; 1.2.4.1 Inception Modules; 1.2.4.2 Dimension Reduction 
505 8 |a 1.2.5 ResNet1.2.5.1 Residual Learning; 1.2.5.2 Identity Mapping by Shortcuts; 1.2.6 Observations and Remarks; 1.3 Transfer Representation Learning; 1.3.1 Method Specifications; 1.3.2 Experimental Results and Discussion; 1.3.2.1 Results of Transfer Representation Learning for OM; 1.3.2.2 Results of Transfer Representation Learning for Melanoma; 1.3.2.3 Qualitative Evaluation: Visualization; 1.3.3 Observations and Remarks; 1.4 Conclusions; References; Chapter 2 Concept-Based and Event-Based Video Search in Large Video Collections; 2.1 Introduction 
505 8 |a 2.2 Video preprocessing and Machine Learning Essentials2.2.1 Video Representation; 2.2.2 Dimensionality Reduction; 2.3 Methodology for Concept Detection and Concept-Based Video Search; 2.3.1 Related Work; 2.3.2 Cascades for Combining Different Video Representations; 2.3.2.1 Problem Definition and Search Space; 2.3.2.2 Problem Solution; 2.3.3 Multi-Task Learning for Concept Detection and Concept-Based Video Search; 2.3.4 Exploiting Label Relations; 2.3.5 Experimental Study; 2.3.5.1 Dataset and Experimental Setup; 2.3.5.2 Experimental Results; 2.3.5.3 Computational Complexity 
505 8 |a 2.4 Methods for Event Detection and Event-Based Video Search2.4.1 Related Work; 2.4.2 Learning from Positive Examples; 2.4.3 Learning Solely from Textual Descriptors: Zero-Example Learning; 2.4.4 Experimental Study; 2.4.4.1 Dataset and Experimental Setup; 2.4.4.2 Experimental Results: Learning from Positive Examples; 2.4.4.3 Experimental Results: Zero-Example Learning; 2.5 Conclusions; 2.6 Acknowledgments; References; Chapter 3 Big Data Multimedia Mining: Feature Extraction Facing Volume, Velocity, and Variety; 3.1 Introduction; 3.2 Scalability through Parallelization 
505 8 |a 3.2.1 Process Parallelization3.2.2 Data Parallelization; 3.3 Scalability through Feature Engineering; 3.3.1 Feature Reduction through Spatial Transformations; 3.3.2 Laplacian Matrix Representation; 3.3.3 Parallel latent Dirichlet allocation and bag of words; 3.4 Deep Learning-Based Feature Learning; 3.4.1 Adaptability that Conquers both Volume and Velocity; 3.4.2 Convolutional Neural Networks; 3.4.3 Recurrent Neural Networks; 3.4.4 Modular Approach to Scalability; 3.5 Benchmark Studies; 3.5.1 Dataset; 3.5.2 Spectrogram Creation; 3.5.3 CNN-Based Feature Extraction; 3.5.4 Structure of the CNNs 
520 |a "A timely overview of cutting edge technologies for multimedia retrieval with a special emphasis on scalability. The amount of multimedia data available every day is enormous and is growing at an exponential rate, creating a great need for new and more efficient approaches for large scale multimedia search. This book addresses that need, covering the area of multimedia retrieval and placing a special emphasis on scalability. It reports the recent works in large scale multimedia search, including research methods and applications, and is structured so that readers with basic knowledge can grasp the core message while still allowing experts and specialists to drill further down into the analytical sections. Big Data Analytics for Large-Scale Multimedia Search covers: representation learning, concept and event-based video search in large collections; big data multimedia mining, large scale video understanding, big multimedia data fusion, large-scale social multimedia analysis, privacy and audiovisual content, data storage and management for big multimedia, large scale multimedia search, multimedia tagging using deep learning, interactive interfaces for big multimedia and medical decision support applications using large multimodal data."--Provided by publisher. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Multimedia data mining. 
650 0 |a Big data. 
650 6 |a Exploration de données multimédia. 
650 6 |a Données volumineuses. 
650 7 |a COMPUTERS  |x Databases  |x Data Mining.  |2 bisacsh 
650 7 |a Big data  |2 fast 
650 7 |a Multimedia data mining  |2 fast 
700 1 |a Huet, Benoit,  |e author. 
700 1 |a Chang, Edward Y.,  |e author. 
700 1 |a Kompatsiaris, Yiannis,  |e author. 
758 |i has work:  |a Big data analytics for large-scale multimedia search (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGmRtXqMYPkCqd3BhJvHQ3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Vrochidis, Stefanos, 1975- author.  |t Big data analytics for large-scale multimedia search  |d Hoboken, NJ, USA : Wiley, [2018]  |z 9781119376972  |w (DLC) 2018035613 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5741210  |z Texto completo 
938 |a EBSCOhost  |b EBSC  |n 2091369 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5741210 
938 |a Askews and Holts Library Services  |b ASKH  |n AH34766808 
994 |a 92  |b IZTAP