|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_on1042567345 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
180703t20182018riu ob 000 0 eng d |
040 |
|
|
|a GZM
|b eng
|e rda
|e pn
|c GZM
|d UIU
|d OCLCF
|d COD
|d YDX
|d EBLCP
|d COO
|d N$T
|d OCLCQ
|d OCLCA
|d OCLCQ
|d UKAHL
|d OCLCQ
|d OCLCO
|d K6U
|d OCLCQ
|d OCLCO
|d OCLCL
|d S9M
|d OCLCL
|
020 |
|
|
|a 1470448130
|q (online)
|
020 |
|
|
|a 9781470448134
|q (electronic bk.)
|
020 |
|
|
|z 1470441020
|q (print)
|
020 |
|
|
|z 9781470441029
|q (print)
|
029 |
1 |
|
|a AU@
|b 000069424201
|
035 |
|
|
|a (OCoLC)1042567345
|
050 |
|
4 |
|a QB351
|b .P527 2018
|
072 |
|
7 |
|a SCI
|x 004000
|2 bisacsh
|
082 |
0 |
4 |
|a 521
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Pinzari, Gabriella,
|d 1966-
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PBJfhbprc38qGDpcGywgHYP
|
245 |
1 |
0 |
|a Perihelia reduction and Global Kolmogorov tori in the planetary problem /
|c Gabriella Pinzari.
|
264 |
|
1 |
|a Providence, Rhode Island :
|b American Mathematical Society,
|c [2018]
|
264 |
|
4 |
|c ©2018
|
300 |
|
|
|a 1 online resource (v, 92 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 0065-9266 ;
|v volume 255, number 1218
|
588 |
0 |
|
|a Print version record.
|
500 |
|
|
|a "September 2018, volume 255, number 1218 (first of 7 numbers)."
|
500 |
|
|
|a Keywords: Canonical coordinates, Jacobi's reduction, Deprit's reduction, Perihelia reduction, symmetries, quasi-periodic motions, Arnold's theorem on the stability of planetary motions.
|
504 |
|
|
|a Includes bibliographical references (pages 91-92).
|
520 |
3 |
|
|a "We prove the existence of an almost full measure set of (3n − 2)-dimensional quasi-periodic motions in the planetary problem with (1 + n) masses, with eccentricities arbitrarily close to the Levi-Civita limiting value and relatively high inclinations. This extends previous results, where smallness of eccentricities and inclinations was assumed. The question had been previously considered by V. I. Arnold (1963) in the 60s, for the particular case of the planar three-body problem, where, due to the limited number of degrees of freedom, it was enough to use the invariance of the system by the SO(3) group. The proof exploits nice parity properties of a new set of coordinates for the planetary problem, which reduces completely the number of degrees of freedom for the system (in particular, its degeneracy due to rotations) and, moreover, is well fitted to its reflection invariance. It allows the explicit construction of an associated close to be integrable system, replacing Birkhoff normal form, common tool of previous literature."--Page v
|
505 |
0 |
|
|a Background and results -- Kepler maps and the Perihelia reduction -- The P-map and the planetary problem -- Global Kolmogorov tori in the planetary problem -- Proofs -- Appendix A. Computing the domain of holomorphy -- Appendix B. Proof of Lemma 3.2 -- Appendix C. Checking the non-degeneracy condition -- Appendix D. Some results from perturbation theory -- Appendix E. More on the geometrical structure of the P-coordinates, compared to Deprit's coordinates.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Celestial mechanics.
|
650 |
|
0 |
|a Planetary theory.
|
650 |
|
0 |
|a Differential equations, Partial.
|
650 |
|
6 |
|a Mécanique céleste.
|
650 |
|
6 |
|a Théorie des planètes.
|
650 |
|
6 |
|a Équations aux dérivées partielles.
|
650 |
|
7 |
|a SCIENCE
|x Astronomy.
|2 bisacsh
|
650 |
|
7 |
|a Mecánica celeste
|2 embne
|
650 |
|
7 |
|a Ecuaciones diferenciales
|2 embne
|
650 |
|
7 |
|a Celestial mechanics
|2 fast
|
650 |
|
7 |
|a Differential equations, Partial
|2 fast
|
650 |
|
7 |
|a Planetary theory
|2 fast
|
710 |
2 |
|
|a American Mathematical Society,
|e publisher.
|
758 |
|
|
|i has work:
|a Perihelia reduction and global Kolmogorov tori in the planetary problem (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGfjyDVvYHp7tcj7fwpCHC
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a PINZARI, GABRIELLA.
|t PERIHELIA REDUCTION AND GLOBAL KOLMOGOROV TORI IN THE PLANETARY PROBLEM.
|d [S.l.] : AMER MATHEMATICAL SOCIETY, 2018
|z 9781470441029
|w (OCoLC)1039596871
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 1218.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5571100
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH37445199
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL5571100
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 1924185
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 15817150
|
994 |
|
|
|a 92
|b IZTAP
|