Cargando…

Perihelia reduction and Global Kolmogorov tori in the planetary problem /

"We prove the existence of an almost full measure set of (3n − 2)-dimensional quasi-periodic motions in the planetary problem with (1 + n) masses, with eccentricities arbitrarily close to the Levi-Civita limiting value and relatively high inclinations. This extends previous results, where small...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Pinzari, Gabriella, 1966- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, Rhode Island : American Mathematical Society, [2018]
Colección:Memoirs of the American Mathematical Society ; no. 1218.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_on1042567345
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 180703t20182018riu ob 000 0 eng d
040 |a GZM  |b eng  |e rda  |e pn  |c GZM  |d UIU  |d OCLCF  |d COD  |d YDX  |d EBLCP  |d COO  |d N$T  |d OCLCQ  |d OCLCA  |d OCLCQ  |d UKAHL  |d OCLCQ  |d OCLCO  |d K6U  |d OCLCQ  |d OCLCO  |d OCLCL  |d S9M  |d OCLCL 
020 |a 1470448130  |q (online) 
020 |a 9781470448134  |q (electronic bk.) 
020 |z 1470441020  |q (print) 
020 |z 9781470441029  |q (print) 
029 1 |a AU@  |b 000069424201 
035 |a (OCoLC)1042567345 
050 4 |a QB351  |b .P527 2018 
072 7 |a SCI  |x 004000  |2 bisacsh 
082 0 4 |a 521  |2 23 
049 |a UAMI 
100 1 |a Pinzari, Gabriella,  |d 1966-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PBJfhbprc38qGDpcGywgHYP 
245 1 0 |a Perihelia reduction and Global Kolmogorov tori in the planetary problem /  |c Gabriella Pinzari. 
264 1 |a Providence, Rhode Island :  |b American Mathematical Society,  |c [2018] 
264 4 |c ©2018 
300 |a 1 online resource (v, 92 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 0065-9266 ;  |v volume 255, number 1218 
588 0 |a Print version record. 
500 |a "September 2018, volume 255, number 1218 (first of 7 numbers)." 
500 |a Keywords: Canonical coordinates, Jacobi's reduction, Deprit's reduction, Perihelia reduction, symmetries, quasi-periodic motions, Arnold's theorem on the stability of planetary motions. 
504 |a Includes bibliographical references (pages 91-92). 
520 3 |a "We prove the existence of an almost full measure set of (3n − 2)-dimensional quasi-periodic motions in the planetary problem with (1 + n) masses, with eccentricities arbitrarily close to the Levi-Civita limiting value and relatively high inclinations. This extends previous results, where smallness of eccentricities and inclinations was assumed. The question had been previously considered by V. I. Arnold (1963) in the 60s, for the particular case of the planar three-body problem, where, due to the limited number of degrees of freedom, it was enough to use the invariance of the system by the SO(3) group. The proof exploits nice parity properties of a new set of coordinates for the planetary problem, which reduces completely the number of degrees of freedom for the system (in particular, its degeneracy due to rotations) and, moreover, is well fitted to its reflection invariance. It allows the explicit construction of an associated close to be integrable system, replacing Birkhoff normal form, common tool of previous literature."--Page v 
505 0 |a Background and results -- Kepler maps and the Perihelia reduction -- The P-map and the planetary problem -- Global Kolmogorov tori in the planetary problem -- Proofs -- Appendix A. Computing the domain of holomorphy -- Appendix B. Proof of Lemma 3.2 -- Appendix C. Checking the non-degeneracy condition -- Appendix D. Some results from perturbation theory -- Appendix E. More on the geometrical structure of the P-coordinates, compared to Deprit's coordinates. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Celestial mechanics. 
650 0 |a Planetary theory. 
650 0 |a Differential equations, Partial. 
650 6 |a Mécanique céleste. 
650 6 |a Théorie des planètes. 
650 6 |a Équations aux dérivées partielles. 
650 7 |a SCIENCE  |x Astronomy.  |2 bisacsh 
650 7 |a Mecánica celeste  |2 embne 
650 7 |a Ecuaciones diferenciales  |2 embne 
650 7 |a Celestial mechanics  |2 fast 
650 7 |a Differential equations, Partial  |2 fast 
650 7 |a Planetary theory  |2 fast 
710 2 |a American Mathematical Society,  |e publisher. 
758 |i has work:  |a Perihelia reduction and global Kolmogorov tori in the planetary problem (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGfjyDVvYHp7tcj7fwpCHC  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a PINZARI, GABRIELLA.  |t PERIHELIA REDUCTION AND GLOBAL KOLMOGOROV TORI IN THE PLANETARY PROBLEM.  |d [S.l.] : AMER MATHEMATICAL SOCIETY, 2018  |z 9781470441029  |w (OCoLC)1039596871 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1218. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5571100  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37445199 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5571100 
938 |a EBSCOhost  |b EBSC  |n 1924185 
938 |a YBP Library Services  |b YANK  |n 15817150 
994 |a 92  |b IZTAP