Cargando…

Perihelia reduction and Global Kolmogorov tori in the planetary problem /

"We prove the existence of an almost full measure set of (3n − 2)-dimensional quasi-periodic motions in the planetary problem with (1 + n) masses, with eccentricities arbitrarily close to the Levi-Civita limiting value and relatively high inclinations. This extends previous results, where small...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Pinzari, Gabriella, 1966- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, Rhode Island : American Mathematical Society, [2018]
Colección:Memoirs of the American Mathematical Society ; no. 1218.
Temas:
Acceso en línea:Texto completo
Descripción
Sumario:"We prove the existence of an almost full measure set of (3n − 2)-dimensional quasi-periodic motions in the planetary problem with (1 + n) masses, with eccentricities arbitrarily close to the Levi-Civita limiting value and relatively high inclinations. This extends previous results, where smallness of eccentricities and inclinations was assumed. The question had been previously considered by V. I. Arnold (1963) in the 60s, for the particular case of the planar three-body problem, where, due to the limited number of degrees of freedom, it was enough to use the invariance of the system by the SO(3) group. The proof exploits nice parity properties of a new set of coordinates for the planetary problem, which reduces completely the number of degrees of freedom for the system (in particular, its degeneracy due to rotations) and, moreover, is well fitted to its reflection invariance. It allows the explicit construction of an associated close to be integrable system, replacing Birkhoff normal form, common tool of previous literature."--Page v
Notas:"September 2018, volume 255, number 1218 (first of 7 numbers)."
Keywords: Canonical coordinates, Jacobi's reduction, Deprit's reduction, Perihelia reduction, symmetries, quasi-periodic motions, Arnold's theorem on the stability of planetary motions.
Descripción Física:1 online resource (v, 92 pages)
Bibliografía:Includes bibliographical references (pages 91-92).
ISBN:1470448130
9781470448134
ISSN:0065-9266 ;