Cargando…

Bordered Heegaard Floer homology /

The authors construct Heegaard Floer theory for 3-manifolds with connected boundary. The theory associates to an oriented, parametrized two-manifold a differential graded algebra. For a three-manifold with parametrized boundary, the invariant comes in two different versions, one of which (type D) is...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Lipshitz, R. (Robert) (Autor), Ozsváth, Peter Steven, 1967- (Autor), Thurston, Dylan P., 1972- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, RI : American Mathematical Society, [2018]
Colección:Memoirs of the American Mathematical Society ; no. 1216.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_on1042567293
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 180703t20182018riua ob 001 0 eng d
040 |a GZM  |b eng  |e rda  |e pn  |c GZM  |d UIU  |d OCLCF  |d YDX  |d EBLCP  |d CUY  |d COD  |d IDB  |d COO  |d LEAUB  |d N$T  |d OCLCQ  |d OCLCA  |d OCLCQ  |d UKAHL  |d OCLCQ  |d VT2  |d OCLCQ  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d S9M  |d OCLCL 
066 |c (S 
019 |a 1262669381 
020 |a 1470447487  |q (online) 
020 |a 9781470447489  |q (electronic bk.) 
020 |z 9781470428884  |q (alk. paper) 
020 |z 1470428881  |q (alk. paper) 
035 |a (OCoLC)1042567293  |z (OCoLC)1262669381 
050 4 |a QA665  |b .L57 2018 
082 0 4 |a 516.3/6  |2 23 
049 |a UAMI 
100 1 |a Lipshitz, R.  |q (Robert),  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjJymXQq4BRwGpyKmJYCcd 
245 1 0 |a Bordered Heegaard Floer homology /  |c Robert Lipshitz, Peter S. Ozsvath, Dylan P. Thurston. 
264 1 |a Providence, RI :  |b American Mathematical Society,  |c [2018] 
264 4 |c ©2018 
300 |a 1 online resource (viii, 279 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 0065-9266 ;  |v volume 254, number 1216 
588 0 |a Print version record. 
500 |a "July 2018, volume 254, number 1216 (fourth of 5 numbers)." 
500 |a Keywords: Three-manifold topology, low-dimensional topology, Heegaard Floer homology, holomorphic curves, extended topological field theory. 
504 |a Includes bibliographical references (pages 269-272) and index. 
505 0 |6 880-01  |a Cover; Title page; Chapter 1. Introduction; 1.1. Background; 1.2. The bordered Floer homology package; 1.3. On gradings; 1.4. The case of three-manifolds with torus boundary; 1.5. Previous work; 1.6. Further developments; 1.7. Organization; Acknowledgments; Chapter 2. \textalt{\Ainf}A-infty structures; 2.1. \textalt{\Ainf}A-infty algebras and modules; 2.2. \textalt{\Ainf}A-infty tensor products; 2.3. Type \textalt{ }D structures; 2.4. Another model for the \textalt{\Ainf}A-infty tensor product; 2.5. Gradings by non-commutative groups 
505 8 |a 5.3. Holomorphic curves in \textalt{\RR× ×[0,1]×\RR} R × Z × [0,1] × R5.4. Compactifications via holomorphic combs; 5.5. Gluing results for holomorphic combs; 5.6. Degenerations of holomorphic curves; 5.7. More on expected dimensions; Chapter 6. Type \textalt{ }D modules; 6.1. Definition of the type \textalt{ }D module; 6.2. \textalt{\bdy²=0}Boundary-squared is zero; 6.3. Invariance; 6.4. Twisted coefficients; Chapter 7. Type \textalt{ }A modules; 7.1. Definition of the type \textalt{ }A module; 7.2. Compatibility with algebra; 7.3. Invariance; 7.4. Twisted coefficients 
505 8 |a Chapter 8. Pairing theorem via nice diagramsChapter 9. Pairing theorem via time dilation; 9.1. Moduli of matched pairs; 9.2. Dilating time; 9.3. Dilating to infinity; 9.4. Completion of the proof of the pairing theorem; 9.5. A twisted pairing theorem; 9.6. An example; Chapter 10. Gradings; 10.1. Algebra review; 10.2. Domains; 10.3. Type \textalt{ }A structures; 10.4. Type \textalt{ }D structures; 10.5. Refined gradings; 10.6. Tensor product; Chapter 11. Bordered manifolds with torus boundary; 11.1. Torus algebra; 11.2. Surgery exact triangle; 11.3. Preliminaries on knot Floer homology 
505 8 |a 11.4. From \textalt{\CFDa}CFDˆ to \textalt{\HFKm}HFK-11.5. From \textalt{\CFKm}CFK- to \textalt{\CFDa}CFDˆ: Statement of results; 11.6. Generalized coefficient maps and boundary degenerations; 11.7. From \textalt{\CFKm}CFK- to \textalt{\CFDa}CFDˆ: Basis-free version; 11.8. Proof of Theorem 11.26; 11.9. Satellites revisited; Appendix A. Bimodules and change of framing; A.1. Statement of results; A.2. Sketch of the construction; A.3. Computations for \textalt{3}3-manifolds with torus boundary; A.4. From \textalt{\HFK}HFK to \textalt{\CFDa}CFDˆ for arbitrary integral framings; Bibliography 
520 |a The authors construct Heegaard Floer theory for 3-manifolds with connected boundary. The theory associates to an oriented, parametrized two-manifold a differential graded algebra. For a three-manifold with parametrized boundary, the invariant comes in two different versions, one of which (type D) is a module over the algebra and the other of which (type A) is an \mathcal A_\infty module. Both are well-defined up to chain homotopy equivalence. For a decomposition of a 3-manifold into two pieces, the \mathcal A_\infty tensor product of the type D module of one piece and the type A module from th. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Floer homology. 
650 0 |a Three-manifolds (Topology) 
650 0 |a Topological manifolds. 
650 0 |a Symplectic geometry. 
650 6 |a Homologie de Floer. 
650 6 |a Variétés topologiques à 3 dimensions. 
650 6 |a Variétés topologiques. 
650 6 |a Géométrie symplectique. 
650 7 |a Variedades topológicas  |2 embne 
650 7 |a Floer homology  |2 fast 
650 7 |a Symplectic geometry  |2 fast 
650 7 |a Three-manifolds (Topology)  |2 fast 
650 7 |a Topological manifolds  |2 fast 
700 1 |a Ozsváth, Peter Steven,  |d 1967-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PBJmpff3Myjrdq8V4Ww97HC 
700 1 |a Thurston, Dylan P.,  |d 1972-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjrQ8Vf3yJqB8WWqd7p44m 
710 2 |a American Mathematical Society,  |e publisher. 
758 |i has work:  |a Bordered Heegaard Floer homology (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGmTTTDw9DKmHr3QhGrdHC  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Lipshitz, R. (Robert).  |t Bordered Heegaard Floer homology  |z 9781470428884  |w (DLC) 2018029366  |w (OCoLC)1031562142 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1216. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5501883  |z Texto completo 
880 8 |6 505-01/(S  |a Chapter 3. The algebra associated to a pointed matched circle3.1. The strands algebra \textalt{\Alg(,)}A(n, k); 3.2. Matched circles and their algebras; 3.3. Gradings; Chapter 4. Bordered Heegaard diagrams; 4.1. Bordered Heegaard diagrams: definition, existence, and uniqueness; 4.2. Examples of bordered Heegaard diagrams; 4.3. Generators, homology classes and \textalt{\spin^{ }}spin-c structures; 4.4. Admissibility criteria; 4.5. Closed diagrams; Chapter 5. Moduli spaces; 5.1. Overview of the moduli spaces; 5.2. Holomorphic curves in \textalt{Σ×[0,1]×\RR}Sigma × [0,1] × R 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37445186 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5501883 
938 |a YBP Library Services  |b YANK  |n 15675529 
938 |a EBSCOhost  |b EBSC  |n 1879715 
994 |a 92  |b IZTAP