|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_on1042567293 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
180703t20182018riua ob 001 0 eng d |
040 |
|
|
|a GZM
|b eng
|e rda
|e pn
|c GZM
|d UIU
|d OCLCF
|d YDX
|d EBLCP
|d CUY
|d COD
|d IDB
|d COO
|d LEAUB
|d N$T
|d OCLCQ
|d OCLCA
|d OCLCQ
|d UKAHL
|d OCLCQ
|d VT2
|d OCLCQ
|d K6U
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|d S9M
|d OCLCL
|
066 |
|
|
|c (S
|
019 |
|
|
|a 1262669381
|
020 |
|
|
|a 1470447487
|q (online)
|
020 |
|
|
|a 9781470447489
|q (electronic bk.)
|
020 |
|
|
|z 9781470428884
|q (alk. paper)
|
020 |
|
|
|z 1470428881
|q (alk. paper)
|
035 |
|
|
|a (OCoLC)1042567293
|z (OCoLC)1262669381
|
050 |
|
4 |
|a QA665
|b .L57 2018
|
082 |
0 |
4 |
|a 516.3/6
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Lipshitz, R.
|q (Robert),
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PCjJymXQq4BRwGpyKmJYCcd
|
245 |
1 |
0 |
|a Bordered Heegaard Floer homology /
|c Robert Lipshitz, Peter S. Ozsvath, Dylan P. Thurston.
|
264 |
|
1 |
|a Providence, RI :
|b American Mathematical Society,
|c [2018]
|
264 |
|
4 |
|c ©2018
|
300 |
|
|
|a 1 online resource (viii, 279 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 0065-9266 ;
|v volume 254, number 1216
|
588 |
0 |
|
|a Print version record.
|
500 |
|
|
|a "July 2018, volume 254, number 1216 (fourth of 5 numbers)."
|
500 |
|
|
|a Keywords: Three-manifold topology, low-dimensional topology, Heegaard Floer homology, holomorphic curves, extended topological field theory.
|
504 |
|
|
|a Includes bibliographical references (pages 269-272) and index.
|
505 |
0 |
|
|6 880-01
|a Cover; Title page; Chapter 1. Introduction; 1.1. Background; 1.2. The bordered Floer homology package; 1.3. On gradings; 1.4. The case of three-manifolds with torus boundary; 1.5. Previous work; 1.6. Further developments; 1.7. Organization; Acknowledgments; Chapter 2. \textalt{\Ainf}A-infty structures; 2.1. \textalt{\Ainf}A-infty algebras and modules; 2.2. \textalt{\Ainf}A-infty tensor products; 2.3. Type \textalt{ }D structures; 2.4. Another model for the \textalt{\Ainf}A-infty tensor product; 2.5. Gradings by non-commutative groups
|
505 |
8 |
|
|a 5.3. Holomorphic curves in \textalt{\RR× ×[0,1]×\RR} R × Z × [0,1] × R5.4. Compactifications via holomorphic combs; 5.5. Gluing results for holomorphic combs; 5.6. Degenerations of holomorphic curves; 5.7. More on expected dimensions; Chapter 6. Type \textalt{ }D modules; 6.1. Definition of the type \textalt{ }D module; 6.2. \textalt{\bdy²=0}Boundary-squared is zero; 6.3. Invariance; 6.4. Twisted coefficients; Chapter 7. Type \textalt{ }A modules; 7.1. Definition of the type \textalt{ }A module; 7.2. Compatibility with algebra; 7.3. Invariance; 7.4. Twisted coefficients
|
505 |
8 |
|
|a Chapter 8. Pairing theorem via nice diagramsChapter 9. Pairing theorem via time dilation; 9.1. Moduli of matched pairs; 9.2. Dilating time; 9.3. Dilating to infinity; 9.4. Completion of the proof of the pairing theorem; 9.5. A twisted pairing theorem; 9.6. An example; Chapter 10. Gradings; 10.1. Algebra review; 10.2. Domains; 10.3. Type \textalt{ }A structures; 10.4. Type \textalt{ }D structures; 10.5. Refined gradings; 10.6. Tensor product; Chapter 11. Bordered manifolds with torus boundary; 11.1. Torus algebra; 11.2. Surgery exact triangle; 11.3. Preliminaries on knot Floer homology
|
505 |
8 |
|
|a 11.4. From \textalt{\CFDa}CFDˆ to \textalt{\HFKm}HFK-11.5. From \textalt{\CFKm}CFK- to \textalt{\CFDa}CFDˆ: Statement of results; 11.6. Generalized coefficient maps and boundary degenerations; 11.7. From \textalt{\CFKm}CFK- to \textalt{\CFDa}CFDˆ: Basis-free version; 11.8. Proof of Theorem 11.26; 11.9. Satellites revisited; Appendix A. Bimodules and change of framing; A.1. Statement of results; A.2. Sketch of the construction; A.3. Computations for \textalt{3}3-manifolds with torus boundary; A.4. From \textalt{\HFK}HFK to \textalt{\CFDa}CFDˆ for arbitrary integral framings; Bibliography
|
520 |
|
|
|a The authors construct Heegaard Floer theory for 3-manifolds with connected boundary. The theory associates to an oriented, parametrized two-manifold a differential graded algebra. For a three-manifold with parametrized boundary, the invariant comes in two different versions, one of which (type D) is a module over the algebra and the other of which (type A) is an \mathcal A_\infty module. Both are well-defined up to chain homotopy equivalence. For a decomposition of a 3-manifold into two pieces, the \mathcal A_\infty tensor product of the type D module of one piece and the type A module from th.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Floer homology.
|
650 |
|
0 |
|a Three-manifolds (Topology)
|
650 |
|
0 |
|a Topological manifolds.
|
650 |
|
0 |
|a Symplectic geometry.
|
650 |
|
6 |
|a Homologie de Floer.
|
650 |
|
6 |
|a Variétés topologiques à 3 dimensions.
|
650 |
|
6 |
|a Variétés topologiques.
|
650 |
|
6 |
|a Géométrie symplectique.
|
650 |
|
7 |
|a Variedades topológicas
|2 embne
|
650 |
|
7 |
|a Floer homology
|2 fast
|
650 |
|
7 |
|a Symplectic geometry
|2 fast
|
650 |
|
7 |
|a Three-manifolds (Topology)
|2 fast
|
650 |
|
7 |
|a Topological manifolds
|2 fast
|
700 |
1 |
|
|a Ozsváth, Peter Steven,
|d 1967-
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PBJmpff3Myjrdq8V4Ww97HC
|
700 |
1 |
|
|a Thurston, Dylan P.,
|d 1972-
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PCjrQ8Vf3yJqB8WWqd7p44m
|
710 |
2 |
|
|a American Mathematical Society,
|e publisher.
|
758 |
|
|
|i has work:
|a Bordered Heegaard Floer homology (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGmTTTDw9DKmHr3QhGrdHC
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Lipshitz, R. (Robert).
|t Bordered Heegaard Floer homology
|z 9781470428884
|w (DLC) 2018029366
|w (OCoLC)1031562142
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 1216.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5501883
|z Texto completo
|
880 |
8 |
|
|6 505-01/(S
|a Chapter 3. The algebra associated to a pointed matched circle3.1. The strands algebra \textalt{\Alg(,)}A(n, k); 3.2. Matched circles and their algebras; 3.3. Gradings; Chapter 4. Bordered Heegaard diagrams; 4.1. Bordered Heegaard diagrams: definition, existence, and uniqueness; 4.2. Examples of bordered Heegaard diagrams; 4.3. Generators, homology classes and \textalt{\spin^{ }}spin-c structures; 4.4. Admissibility criteria; 4.5. Closed diagrams; Chapter 5. Moduli spaces; 5.1. Overview of the moduli spaces; 5.2. Holomorphic curves in \textalt{Σ×[0,1]×\RR}Sigma × [0,1] × R
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH37445186
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL5501883
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 15675529
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 1879715
|
994 |
|
|
|a 92
|b IZTAP
|