Cargando…

Diophantine approximation and the geometry of limit sets in Gromov hyperbolic metric spaces /

"In this paper, we provide a complete theory of Diophantine approximation in the limit set of a group acting on a Gromov hyperbolic metric space. This summarizes and completes a long line of results by many authors, from Patterson's classic '76 paper to more recent results of Hersonsk...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Fishman, Lior, 1964- (Autor), Simmons, David, 1988- (Autor), Urbański, Mariusz (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, Rhode Island : American Mathematical Society, 2018.
Colección:Memoirs of the American Mathematical Society ; no. 1215.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_on1042567167
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 180703t20182018riu ob 000 0 eng d
040 |a GZM  |b eng  |e rda  |e pn  |c GZM  |d UIU  |d OCLCF  |d OCLCA  |d YDX  |d EBLCP  |d CUY  |d COD  |d IDB  |d COO  |d N$T  |d OCLCQ  |d OCLCA  |d OCLCQ  |d UKAHL  |d OCLCQ  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d S9M 
020 |a 1470447460  |q (online) 
020 |a 9781470447465  |q (electronic bk.) 
020 |z 1470428865  |q (print) 
020 |z 9781470428860  |q (print) 
035 |a (OCoLC)1042567167 
050 4 |a QA242  |b .F57 2018 
072 7 |a MAT  |x 002040  |2 bisacsh 
082 0 4 |a 512.73 
049 |a UAMI 
100 1 |a Fishman, Lior,  |d 1964-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjtDj9TckfC7btwDjWBJj3 
245 1 0 |a Diophantine approximation and the geometry of limit sets in Gromov hyperbolic metric spaces /  |c Lior Fishman, David Simmons, Mariusz Urbański. 
264 1 |a Providence, Rhode Island :  |b American Mathematical Society,  |c 2018. 
264 4 |c ©2018 
300 |a 1 online resource (v, 137 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 0065-9266 ;  |v volume 254, number 1215 
588 0 |a Print version record. 
500 |a "July 2018, volume 254, number 1215 (third of 5 numbers)." 
500 |a "Keywords: Diophantine approximation, Schmidt's game, hyperbolic geometry, Gromov hyperbolic metric spaces." 
504 |a Includes bibliographical references (pages 133-137). 
520 3 |a "In this paper, we provide a complete theory of Diophantine approximation in the limit set of a group acting on a Gromov hyperbolic metric space. This summarizes and completes a long line of results by many authors, from Patterson's classic '76 paper to more recent results of Hersonsky and Paulin ('02, '04, '07). Concrete examples of situations we consider which have not been considered before include geometrically infinite Kleinian groups, geometrically finite Kleinian groups where the approximating point is not a fixed point of any element of the group, and groups acting on infinite-dimensional hyperbolic space. Moreover, in addition to providing much greater generality than any prior work of which we are aware, our results also give new insight into the nature of the connection between Diophantine approximation and the geometry of the limit set within which it takes place. Two results are also contained here which are purely geometric: a generalization of a theorem of Bishop and Jones ('97) to Gromov hyperbolic metric spaces, and a proof that the uniformly radial limit set of a group acting on a proper geodesic Gromov hyperbolic metric space has zero Patterson-Sullivan measure unless the group is quasiconvex-cocompact. The latter is an application of a Diophantine theorem."  |c Provided by publisher 
505 0 |a Introduction -- Gromov hyperbolic metric spaces -- Basic facts about Diophantine approximation -- Schmidt's game and McMullen's absolute game -- Partition structures -- Proof of Theorem 6.1 (Absolute winning ...) -- Proof of Theorem 7.1 (Generalization of the Jarník-Besicovitch Theorem) -- Proof of Theorem 8.1 (Generalization of Khinchin's Theorem) -- Proof of Theorem 9.3 (BA [subscript]d has full dimension in [lambda][subscript]r (G)) -- Appendix A. Any function is an orbital counting function for some parabolic group -- Appendix B. Real, complex, and quaternionic hyperbolic spaces -- Appendix C. The potential function game -- Appendix D. Proof of Theorem 6.1 using the H-potential game, where H = points -- Appendix E. Winning sets and partition structures. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Diophantine approximation. 
650 0 |a Geometry, Hyperbolic. 
650 0 |a Hyperbolic spaces. 
650 0 |a Metric spaces. 
650 6 |a Approximation diophantienne. 
650 6 |a Géométrie hyperbolique. 
650 6 |a Espaces hyperboliques. 
650 6 |a Espaces métriques. 
650 7 |a MATHEMATICS  |x Algebra  |x Intermediate.  |2 bisacsh 
650 7 |a Espacios métricos  |2 embne 
650 0 7 |a Ecuaciones diferenciales hiperbólicas-Soluciones numéricas  |2 embucm 
650 0 7 |a Análisis diofántico  |2 embucm 
650 7 |a Diophantine approximation  |2 fast 
650 7 |a Geometry, Hyperbolic  |2 fast 
650 7 |a Hyperbolic spaces  |2 fast 
650 7 |a Metric spaces  |2 fast 
700 1 |a Simmons, David,  |d 1988-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjF4gR6qWVp7DgCwxXvv9C 
700 1 |a Urbański, Mariusz,  |e author. 
710 2 |a American Mathematical Society,  |e publisher. 
776 0 8 |i Print version:  |a FISHMAN, LIOR.  |t DIOPHANTINE APPROXIMATION AND THE GEOMETRY OF LIMIT SETS IN GROMOV HYPERBOLIC METRIC SPACES.  |d [S.l.] : AMER MATHEMATICAL SOCIETY, 2018  |z 1470428865  |w (OCoLC)1031536263 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1215. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5501869  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37445185 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5501869 
938 |a EBSCOhost  |b EBSC  |n 1879714 
938 |a YBP Library Services  |b YANK  |n 15675528 
994 |a 92  |b IZTAP