Cargando…

Tensor Numerical Methods in Scientific Computing /

The most difficult computational problems nowadays are those of higher dimensions. This research monograph offers an introduction to tensor numerical methods designed for the solution of the multidimensional problems in scientific computing. These methods are based on the rank-structured approximati...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Khoromskij, Boris N. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin ; Boston : De Gruyter, [2018]
Colección:Radon series on computational and applied mathematics ; 19.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_on1042026708
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 180622t20182018gw a fob z001 0 eng d
040 |a DEGRU  |b eng  |e rda  |e pn  |c DEGRU  |d N$T  |d YDX  |d EBLCP  |d OCLCO  |d YDX  |d OCLCF  |d STF  |d CEF  |d WYU  |d OCLCQ  |d U3W  |d UKAHL  |d OCLCQ  |d K6U  |d OCLCQ  |d OCLCO  |d OCLCQ  |d DEGRU  |d OCLCO  |d OCLCL 
020 |a 9783110365917  |q (electronic book) 
020 |a 311036591X  |q (electronic book) 
024 7 |a 10.1515/9783110365917  |2 doi 
035 |a (OCoLC)1042026708 
050 4 |a QA433  |b .K46 2018 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a SCI040000  |2 bisacsh 
072 7 |a MAT  |x 039000  |2 bisacsh 
072 7 |a MAT  |x 023000  |2 bisacsh 
072 7 |a MAT  |x 026000  |2 bisacsh 
082 0 4 |a 515/.63  |2 23 
082 0 4 |a 510  |2 23 
049 |a UAMI 
100 1 |a Khoromskij, Boris N.,  |e author. 
245 1 0 |a Tensor Numerical Methods in Scientific Computing /  |c Boris N. Khoromskij. 
264 1 |a Berlin ;  |a Boston :  |b De Gruyter,  |c [2018] 
264 4 |c Ã2018 
300 |a 1 online resource (x, 369 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Radon Series on Computational and Applied Mathematics ;  |v volume 19 
504 |a Includes bibliographical references and index. 
505 0 0 |t Frontmatter --  |t Contents --  |t 1. Introduction --  |t 2. Theory on separable approximation of multivariate functions --  |t 3. Multilinear algebra and nonlinear tensor approximation --  |t 4. Superfast computations via quantized tensor approximation --  |t 5. Tensor approach to multidimensional integrodifferential equations --  |t Bibliography --  |t Index. 
520 |a The most difficult computational problems nowadays are those of higher dimensions. This research monograph offers an introduction to tensor numerical methods designed for the solution of the multidimensional problems in scientific computing. These methods are based on the rank-structured approximation of multivariate functions and operators by using the appropriate tensor formats. The old and new rank-structured tensor formats are investigated. We discuss in detail the novel quantized tensor approximation method (QTT) which provides function-operator calculus in higher dimensions in logarithmic complexity rendering super-fast convolution, FFT and wavelet transforms. This book suggests the constructive recipes and computational schemes for a number of real life problems described by the multidimensional partial differential equations. We present the theory and algorithms for the sinc-based separable approximation of the analytic radial basis functions including Green's and Helmholtz kernels. The efficient tensor-based techniques for computational problems in electronic structure calculations and for the grid-based evaluation of long-range interaction potentials in multi-particle systems are considered. We also discuss the QTT numerical approach in many-particle dynamics, tensor techniques for stochastic/parametric PDEs as well as for the solution and homogenization of the elliptic equations with highly-oscillating coefficients. Contents Theory on separable approximation of multivariate functions Multilinear algebra and nonlinear tensor approximation Superfast computations via quantized tensor approximation Tensor approach to multidimensional integrodifferential equations. 
588 0 |a Online resource; title from digital title page (viewed on September 11, 2018). 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Calculus of tensors. 
650 6 |a Calcul tensoriel. 
650 7 |a MATHEMATICS  |x Essays.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Pre-Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Reference.  |2 bisacsh 
650 7 |a Calculus of tensors  |2 fast 
758 |i has work:  |a Tensor Numerical Methods in Scientific Computing (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFykFhdmjBbHkTQ9bDCVJC  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |z 9783110391398 
776 0 8 |i Print version:  |z 9783110370133 
830 0 |a Radon series on computational and applied mathematics ;  |v 19. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4917467  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH29675676 
938 |a Askews and Holts Library Services  |b ASKH  |n AH36184294 
938 |a De Gruyter  |b DEGR  |n 9783110365917 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL4917467 
938 |a EBSCOhost  |b EBSC  |n 1837750 
938 |a YBP Library Services  |b YANK  |n 11773813 
994 |a 92  |b IZTAP