Cargando…

Mathematical Study of Degenerate Boundary Layers.

This paper is concerned with a complete asymptotic analysis as E \to 0 of the Munk equation \partial _x\psi -E \Delta ^2 \psi = \tau in a domain \Omega \subset \mathbf R^2, supplemented with boundary conditions for \psi and \partial _n \psi . This equation is a simple model for the circulation of cu...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Dalibard, Anne-Laure
Otros Autores: Saint-Raymond, Laure
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence : American Mathematical Society, 2018.
Colección:Memoirs of the American Mathematical Society Ser.
Temas:
Acceso en línea:Texto completo
Descripción
Sumario:This paper is concerned with a complete asymptotic analysis as E \to 0 of the Munk equation \partial _x\psi -E \Delta ^2 \psi = \tau in a domain \Omega \subset \mathbf R^2, supplemented with boundary conditions for \psi and \partial _n \psi . This equation is a simple model for the circulation of currents in closed basins, the variables x and y being respectively the longitude and the latitude. A crude analysis shows that as E \to 0, the weak limit of \psi satisfies the so-called Sverdrup transport equation inside the domain, namely \partial _x \psi ^0=\tau, while boundary layers appear in.
Descripción Física:1 online resource (118 pages)
ISBN:9781470444075
1470444070