Cargando…

Hands-on Machine Learning with JavaScript : Solve complex computational web problems using machine learning.

Chapter 2: Data Exploration; An overview; Feature identification; The curse of dimensionality; Feature selection and feature extraction; Pearson correlation example; Cleaning and preparing data; Handling missing data; Missing categorical data; Missing numerical data; Handling noise; Handling outlier...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kanber, Burak
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, 2018.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_on1039704668
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 180609s2018 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d MERUC  |d IDB  |d CHVBK  |d NLE  |d TEFOD  |d OCLCQ  |d LVT  |d UKAHL  |d OCLCQ  |d UX1  |d OCLCF  |d K6U  |d N$T  |d UKMGB  |d NZAUC  |d OCLCQ  |d OCLCO  |d OCLCL  |d TMA  |d OCLCQ 
015 |a GBC205985  |2 bnb 
016 7 |a 018897116  |2 Uk 
019 |a 1175624110 
020 |a 9781788990301  |q (electronic bk.) 
020 |a 1788990307  |q (electronic bk.) 
020 |z 9781788998246 
029 1 |a CHNEW  |b 001016538 
029 1 |a CHVBK  |b 523135351 
029 1 |a AU@  |b 000067095565 
029 1 |a UKMGB  |b 018897116 
035 |a (OCoLC)1039704668  |z (OCoLC)1175624110 
037 |a BBFD8E62-92D9-443C-9653-7D6159034739  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QA76.73.J39  |b .K363 2018eb 
082 0 4 |a 005.2762  |2 23 
049 |a UAMI 
100 1 |a Kanber, Burak. 
245 1 0 |a Hands-on Machine Learning with JavaScript :  |b Solve complex computational web problems using machine learning. 
260 |a Birmingham :  |b Packt Publishing,  |c 2018. 
300 |a 1 online resource (343 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Cover; Copyright and Credits; Packt Upsell; Contributors; Table of Contents; Preface; Chapter 1: Exploring the Potential of JavaScript; Why JavaScript?; Why machine learning, why now?; Advantages and challenges of JavaScript; The CommonJS initiative; Node.js; TypeScript language; Improvements in ES6; Let and const; Classes; Module imports; Arrow functions; Object literals; The for ... of function; Promises; The async/await functions; Preparing the development environment; Installing Node.js; Optionally installing Yarn; Creating and initializing an example project; Creating a Hello World project. 
520 |a Chapter 2: Data Exploration; An overview; Feature identification; The curse of dimensionality; Feature selection and feature extraction; Pearson correlation example; Cleaning and preparing data; Handling missing data; Missing categorical data; Missing numerical data; Handling noise; Handling outliers; Transforming and normalizing data; Summary; Chapter 3: Tour of Machine Learning Algorithms; Introduction to machine learning; Types of learning; Unsupervised learning; Supervised learning; Measuring accuracy; Supervised learning algorithms; Reinforcement learning; Categories of algorithms. 
505 8 |a ClusteringClassification; Regression; Dimensionality reduction; Optimization; Natural language processing; Image processing; Summary; Chapter 4: Grouping with Clustering Algorithms; Average and distance; Writing the k-means algorithm; Setting up the environment; Initializing the algorithm; Testing random centroid generation; Assigning points to centroids; Updating centroid locations; The main loop; Example 1 -- k-means on simple 2D data; Example 2 -- 3D data; k-means where k is unknown; Summary; Chapter 5: Classification Algorithms; k-Nearest Neighbor; Building the KNN algorithm. 
505 8 |a Example 1 -- Height, weight, and genderExample 2 -- Decolorizing a photo; Naive Bayes classifier; Tokenization; Building the algorithm; Example 3 -- Movie review sentiment; Support Vector Machine; Random forest; Summary; Chapter 6: Association Rule Algorithms; The mathematical perspective; The algorithmic perspective; Association rule applications; Example -- retail data; Summary; Chapter 7: Forecasting with Regression Algorithms; Regression versus classification; Regression basics; Example 1 -- linear regression; Example 2 -- exponential regression; Example 3 -- polynomial regression. 
505 8 |a Other time-series analysis techniquesFiltering; Seasonality analysis; Fourier analysis; Summary; Chapter 8: Artificial Neural Network Algorithms; Conceptual overview of neural networks; Backpropagation training; Example -- XOR in TensorFlow.js; Summary; Chapter 9: Deep Neural Networks; Convolutional Neural Networks; Convolutions and convolution layers; Example -- MNIST handwritten digits; Recurrent neural networks; SimpleRNN; Gated recurrent units; Long Short-Term Memory; Summary; Chapter 10: Natural Language Processing in Practice; String distance; Term frequency -- inverse document frequency. 
500 |a Tokenizing. 
520 |a This book demonstrates various machine learning techniques and their implementation in JavaScript. Build models to power your applications with smart, predictive features. From predicting future prices, analyzing sentiments to medical diagnosis, this book shows you how to use the power of JavaScript to build efficient machine learning systems. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a JavaScript. 
650 7 |a Natural language & machine translation.  |2 bicssc 
650 7 |a Neural networks & fuzzy systems.  |2 bicssc 
650 7 |a Artificial intelligence.  |2 bicssc 
650 7 |a Computers  |x Natural Language Processing.  |2 bisacsh 
650 7 |a Computers  |x Neural Networks.  |2 bisacsh 
650 7 |a Computers  |x Intelligence (AI) & Semantics.  |2 bisacsh 
650 7 |a JavaScript (Computer program language)  |2 fast 
758 |i has work:  |a HANDS MACHINE LEARNING WITH JAVASCRIPT;SOLVE COMPLEX COMPUTATIONAL WEB PROBLEMS USING MACHINE LEARNING (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCYY9XcvXBtWKqdTfQTrJcP  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Kanber, Burak.  |t Hands-on Machine Learning with JavaScript : Solve complex computational web problems using machine learning.  |d Birmingham : Packt Publishing, ©2018 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5405677  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n BDZ0036924760 
938 |a EBL - Ebook Library  |b EBLB  |n EBL5405677 
938 |a EBSCOhost  |b EBSC  |n 1823653 
994 |a 92  |b IZTAP