Cargando…

Mastering Machine Learning Algorithms : Expert techniques to implement popular machine learning algorithms and fine-tune your models.

This book is your guide to quickly get to grips with the most widely used machine learning algorithms. As a data science professional, this book will help you design and train better machine learning models to solve a variety of complex problems, and make the machine learn your requirements.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bonaccorso c/o Quandoo, Giuseppe
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, 2018.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_on1039688637
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 180609s2018 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d MERUC  |d NLE  |d UWW  |d OCLCQ  |d UKMGB  |d OCLCO  |d LVT  |d IDB  |d UKAHL  |d OCLCQ  |d OCLCO  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
015 |a GBB8J1051  |2 bnb 
016 7 |a 018897099  |2 Uk 
020 |a 9781788625906 
020 |a 1788625900 
020 |z 9781788621113 
029 1 |a UKMGB  |b 018897099 
029 1 |a AU@  |b 000067288783 
035 |a (OCoLC)1039688637 
037 |a 9781788625906  |b Packt Publishing 
050 4 |a Q325.5 
082 0 4 |a 006.31  |2 23 
049 |a UAMI 
100 1 |a Bonaccorso c/o Quandoo, Giuseppe. 
245 1 0 |a Mastering Machine Learning Algorithms :  |b Expert techniques to implement popular machine learning algorithms and fine-tune your models. 
260 |a Birmingham :  |b Packt Publishing,  |c 2018. 
300 |a 1 online resource (567 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Cover; Copyright and Credits; Dedication; Packt Upsell; Contributors; Table of Contents; Preface; Chapter 1: Machine Learning Model Fundamentals; Models and data; Zero-centering and whitening; Training and validation sets; Cross-validation; Features of a machine learning model; Capacity of a model; Vapnik-Chervonenkis capacity; Bias of an estimator; Underfitting; Variance of an estimator; Overfitting; The Cramér-Rao bound; Loss and cost functions; Examples of cost functions; Mean squared error; Huber cost function; Hinge cost function; Categorical cross-entropy; Regularization; Ridge; Lasso. 
505 8 |a ElasticNetEarly stopping; Summary; Chapter 2: Introduction to Semi-Supervised Learning; Semi-supervised scenario; Transductive learning; Inductive learning; Semi-supervised assumptions; Smoothness assumption; Cluster assumption; Manifold assumption; Generative Gaussian mixtures; Example of a generative Gaussian mixture; Weighted log-likelihood; Contrastive pessimistic likelihood estimation; Example of contrastive pessimistic likelihood estimation; Semi-supervised Support Vector Machines (S3VM); Example of S3VM; Transductive Support Vector Machines (TSVM); Example of TSVM; Summary. 
505 8 |a Chapter 3: Graph-Based Semi-Supervised LearningLabel propagation; Example of label propagation; Label propagation in Scikit-Learn; Label spreading; Example of label spreading; Label propagation based on Markov random walks; Example of label propagation based on Markov random walks; Manifold learning; Isomap; Example of Isomap; Locally linear embedding; Example of locally linear embedding; Laplacian Spectral Embedding; Example of Laplacian Spectral Embedding; t-SNE; Example of t-distributed stochastic neighbor embedding ; Summary; Chapter 4: Bayesian Networks and Hidden Markov Models. 
505 8 |a Conditional probabilities and Bayes' theoremBayesian networks; Sampling from a Bayesian network; Direct sampling; Example of direct sampling; A gentle introduction to Markov chains; Gibbs sampling; Metropolis-Hastings sampling; Example of Metropolis-Hastings sampling; Sampling example using PyMC3; Hidden Markov Models (HMMs); Forward-backward algorithm; Forward phase; Backward phase; HMM parameter estimation; Example of HMM training with hmmlearn; Viterbi algorithm; Finding the most likely hidden state sequence with hmmlearn; Summary; Chapter 5: EM Algorithm and Applications. 
505 8 |a MLE and MAP learningEM algorithm; An example of parameter estimation; Gaussian mixture; An example of Gaussian Mixtures using Scikit-Learn; Factor analysis; An example of factor analysis with Scikit-Learn; Principal Component Analysis; An example of PCA with Scikit-Learn; Independent component analysis; An example of FastICA with Scikit-Learn; Addendum to HMMs; Summary; Chapter 6: Hebbian Learning and Self-Organizing Maps; Hebb's rule; Analysis of the covariance rule; Example of covariance rule application; Weight vector stabilization and Oja's rule; Sanger's network. 
500 |a Example of Sanger's network. 
520 |a This book is your guide to quickly get to grips with the most widely used machine learning algorithms. As a data science professional, this book will help you design and train better machine learning models to solve a variety of complex problems, and make the machine learn your requirements. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Machine learning. 
650 0 |a Computer algorithms. 
650 2 |a Algorithms 
650 2 |a Machine Learning 
650 6 |a Apprentissage automatique. 
650 6 |a Algorithmes. 
650 7 |a algorithms.  |2 aat 
650 7 |a Mathematical theory of computation.  |2 bicssc 
650 7 |a Artificial intelligence.  |2 bicssc 
650 7 |a Machine learning.  |2 bicssc 
650 7 |a Information architecture.  |2 bicssc 
650 7 |a Database design & theory.  |2 bicssc 
650 7 |a Computers  |x Intelligence (AI) & Semantics.  |2 bisacsh 
650 7 |a Computers  |x Machine Theory.  |2 bisacsh 
650 7 |a Computers  |x Data Modeling & Design.  |2 bisacsh 
650 7 |a Computer algorithms  |2 fast 
650 7 |a Machine learning  |2 fast 
758 |i has work:  |a MASTERING MACHINE LEARNING ALGORITHMS (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCXV3RHdtTwWQj7p966QwRX  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Bonaccorso c/o Quandoo, Giuseppe.  |t Mastering Machine Learning Algorithms : Expert techniques to implement popular machine learning algorithms and fine-tune your models.  |d Birmingham : Packt Publishing, ©2018 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5405679  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n BDZ0036924762 
938 |a EBL - Ebook Library  |b EBLB  |n EBL5405679 
994 |a 92  |b IZTAP