Cargando…

Neckpinch dynamics for asymmetric surfaces evolving by mean curvature flow /

The authors study noncompact surfaces evolving by mean curvature flow (mcf). For an open set of initial data that are C^3-close to round, but without assuming rotational symmetry or positive mean curvature, the authors show that mcf solutions become singular in finite time by forming neckpinches, an...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Zhou, Gang (Mathematics professor) (Autor), Knopf, Dan, 1959- (Autor), Sigal, Israel Michael, 1945- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, Rhode Island : American Mathematical Society, [2018]
Colección:Memoirs of the American Mathematical Society ; no. 1210.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_on1038189813
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 180531t20182018riu ob 000 0 eng d
040 |a GZM  |b eng  |e rda  |e pn  |c GZM  |d YDX  |d COD  |d EBLCP  |d N$T  |d OCLCF  |d UIU  |d IDB  |d INT  |d OCLCQ  |d COO  |d OCLCQ  |d LEAUB  |d OCLCA  |d OCLCQ  |d UKAHL  |d OCLCQ  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d S9M  |d OCLCL 
020 |a 9781470444150  |q (electronic bk.) 
020 |a 1470444151  |q (electronic bk.) 
020 |z 9781470428402  |q (alk. paper) 
020 |z 1470428407  |q (alk. paper) 
035 |a (OCoLC)1038189813 
050 4 |a QA377.3  |b .Z57 2018 
072 7 |a MAT  |x 012000  |2 bisacsh 
082 0 4 |a 516.3/62  |2 23 
049 |a UAMI 
100 1 |a Zhou, Gang  |c (Mathematics professor),  |e author. 
245 1 0 |a Neckpinch dynamics for asymmetric surfaces evolving by mean curvature flow /  |c Gang Zhou, Dan Knopf, Israel Michael Sigal. 
264 1 |a Providence, Rhode Island :  |b American Mathematical Society,  |c [2018] 
264 4 |c ©2018 
300 |a 1 online resource (v, 78 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 0065-9266 ;  |v volume 253, number 1210 
588 0 |a Print version record. 
500 |a "May 2018, volume 253, number 1210 (fifth of 7 numbers)." 
504 |a Includes bibliographical references (page 78). 
505 0 |a Cover; Title page; Chapter 1. Introduction; 1.1. What we study; 1.2. Basic evolution equations; 1.3. Implied evolution equations; Chapter 2. The first bootstrap machine; 2.1. Input; 2.2. Output; 2.3. Structure; Chapter 3. Estimates of first-order derivatives; Chapter 4. Decay estimates in the inner region; 4.1. Differential inequalities; 4.2. Lyapunov functionals of second and third order; 4.3. Lyapunov functionals of fourth and fifth order; 4.4. Estimates of second- and third-order derivatives; Chapter 5. Estimates in the outer region; 5.1. Second-order decay estimates. 
505 8 |a 5.2. Third-order decay estimates5.3. Third-order smallness estimates; Chapter 6. The second bootstrap machine; 6.1. Input; 6.2. Output; 6.3. Structure; Chapter 7. Evolution equations for the decomposition; Chapter 8. Estimates to control the parameters and; Chapter 9. Estimates to control the fluctuation; 9.1. Proof of estimate (7.12); 9.2. Proof of estimate (7.13); 9.3. Proof of estimate (7.15); 9.4. Proof of estimate (7.14); Chapter 10. Proof of the Main Theorem; Appendix A. Mean curvature flow of normal graphs; Appendix B. Interpolation estimates. 
505 8 |a Appendix C.A parabolic maximum principle for noncompact domainsAppendix D. Estimates of higher-order derivatives; Bibliography; Back Cover. 
520 |a The authors study noncompact surfaces evolving by mean curvature flow (mcf). For an open set of initial data that are C^3-close to round, but without assuming rotational symmetry or positive mean curvature, the authors show that mcf solutions become singular in finite time by forming neckpinches, and they obtain detailed asymptotics of that singularity formation. The results show in a precise way that mcf solutions become asymptotically rotationally symmetric near a neckpinch singularity. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Evolution equations  |x Asymptotic theory. 
650 0 |a Asymptotic expansions. 
650 0 |a Curvature. 
650 0 |a Singularities (Mathematics) 
650 6 |a Développements asymptotiques. 
650 6 |a Courbure. 
650 6 |a Singularités (Mathématiques) 
650 7 |a MATHEMATICS  |x Geometry  |x General.  |2 bisacsh 
650 7 |a Singularidades (Matemáticas)  |2 embne 
650 0 7 |a Ecuaciones de evolución  |2 embucm 
650 0 7 |a Desarrollos asintóticos  |2 embucm 
650 7 |a Asymptotic expansions  |2 fast 
650 7 |a Curvature  |2 fast 
650 7 |a Evolution equations  |x Asymptotic theory  |2 fast 
650 7 |a Singularities (Mathematics)  |2 fast 
700 1 |a Knopf, Dan,  |d 1959-  |e author. 
700 1 |a Sigal, Israel Michael,  |d 1945-  |e author. 
710 2 |a American Mathematical Society,  |e publisher. 
758 |i has work:  |a Neckpinch dynamics for asymmetric surfaces evolving by mean curvature flow (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGmPcjm49JqKKCYXXpVf7b  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Zhou, Gang (Mathematics professor).  |t Neckpinch dynamics for asymmetric surfaces evolving by mean curvature flow  |z 9781470428402  |w (DLC) 2018017360  |w (OCoLC)1024172866 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1210.  |x 0065-9266 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5409187  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37445167 
938 |a EBL - Ebook Library  |b EBLB  |n EBL5409187 
938 |a EBSCOhost  |b EBSC  |n 1824503 
938 |a YBP Library Services  |b YANK  |n 15498901 
994 |a 92  |b IZTAP