Degree spectra of relations on a cone /
Let \mathcal A be a mathematical structure with an additional relation R. The author is interested in the degree spectrum of R, either among computable copies of \mathcal A when (\mathcal A, R) is a ""natural"" structure, or (to make this rigorous) among copies of (\mathcal A, R)...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, Rhode Island :
American Mathematical Society,
[2018]
|
Colección: | Memoirs of the American Mathematical Society ;
no. 1208. |
Temas: | |
Acceso en línea: | Texto completo |
Sumario: | Let \mathcal A be a mathematical structure with an additional relation R. The author is interested in the degree spectrum of R, either among computable copies of \mathcal A when (\mathcal A, R) is a ""natural"" structure, or (to make this rigorous) among copies of (\mathcal A, R) computable in a large degree d. He introduces the partial order of degree spectra on a cone and begin the study of these objects. Using a result of Harizanov--that, assuming an effectiveness condition on \mathcal A and R, if R is not intrinsically computable, then its degree spectrum contains all c.e. degrees--the autho |
---|---|
Notas: | "Volume 253, number 1208 (third of 7 numbers), May 2018." |
Descripción Física: | 1 online resource (v, 107 pages) : illustrations |
Bibliografía: | Includes bibliographical references (pages 105-106) and index. |
ISBN: | 9781470444112 1470444119 |
ISSN: | 1947-6221 ; |