Cargando…

Degree spectra of relations on a cone /

Let \mathcal A be a mathematical structure with an additional relation R. The author is interested in the degree spectrum of R, either among computable copies of \mathcal A when (\mathcal A, R) is a ""natural"" structure, or (to make this rigorous) among copies of (\mathcal A, R)...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Harrison-Trainor, Matthew, 1990- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, Rhode Island : American Mathematical Society, [2018]
Colección:Memoirs of the American Mathematical Society ; no. 1208.
Temas:
Acceso en línea:Texto completo
Descripción
Sumario:Let \mathcal A be a mathematical structure with an additional relation R. The author is interested in the degree spectrum of R, either among computable copies of \mathcal A when (\mathcal A, R) is a ""natural"" structure, or (to make this rigorous) among copies of (\mathcal A, R) computable in a large degree d. He introduces the partial order of degree spectra on a cone and begin the study of these objects. Using a result of Harizanov--that, assuming an effectiveness condition on \mathcal A and R, if R is not intrinsically computable, then its degree spectrum contains all c.e. degrees--the autho
Notas:"Volume 253, number 1208 (third of 7 numbers), May 2018."
Descripción Física:1 online resource (v, 107 pages) : illustrations
Bibliografía:Includes bibliographical references (pages 105-106) and index.
ISBN:9781470444112
1470444119
ISSN:1947-6221 ;