Cargando…

Mathematics and philosophy /

This book, which studies the links between mathematics and philosophy, highlights a reversal. Initially, the (Greek) philosophers were also mathematicians (geometers). Their vision of the world stemmed from their research in this field (rational and irrational numbers, problem of duplicating the cub...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Parrochia, Daniel, 1951- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Hoboken, NJ : ISTE Ltd ; John Wiley & Sons, Inc., 2018.
Colección:Mathematics and statistics series (ISTE)
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro; Table of Contents; Introduction; PART: 1 The Contribution of Mathematician-Philosophers; Introduction to Part 1; 1 Irrational Quantities; 1.1. The appearance of irrationals or the end of the Pythagorean dream; 1.2. The first philosophical impact; 1.3. Consequences of the discovery of irrationals; 1.4. Possible solutions; 1.5. A famous example: the golden number; 1.6. Plato and the dichotomic processes; 1.7. The Platonic generalization of ancient Pythagoreanism; 1.8. Epistemological consequences: the evolution of reason; 2 All About the Doubling of the Cube.
  • 6 Complexes, Logarithms and Exponentials6.1. The road to complex numbers; 6.2. Logarithms and exponentials; 6.3. De Moivre's and Euler's formulas; 6.4. Consequences on Hegelian philosophy; 6.5. Euler's formula; 6.6. Euler, Diderot and the existence of God; 6.7. The approximation of functions; 6.8. Wronski's philosophy and mathematics; 6.9. Historical positivism and spiritual metaphysics; 6.10. The physical interest of complex numbers; 6.11. Consequences on Bergsonian philosophy; PART: 3 Significant Advances; Introduction to Part 3; 7 Chance, Probability and Metaphysics.
  • 7.1. Calculating probability: a brief history7.2. Pascal's "wager"; 7.3. Social applications, from Condorcet to Musil; 7.4. Chance, coincidences and omniscience; 8 The Geometric Revolution; 8.1. The limits of the Euclidean demonstrative ideal; 8.2. Contesting Euclidean geometry; 8.3. Bolyai's and Lobatchevsky geometries; 8.4. Riemann's elliptical geometry; 8.5. Bachelard and the philosophy of "non"; 8.6. The unification of Geometry by Beltrami and Klein; 8.7. Hilbert's axiomatization; 8.8. The reception of non-Euclidean geometries; 8.9. A distant impact: Finsler's philosophy.