Cargando…

Toric Topology.

Toric topology is the study of algebraic, differential, symplectic-geometric, combinatorial, and homotopy-theoretic aspects of a particular class of torus actions whose quotients are highly structured. The combinatorial properties of this quotient and the equivariant topology of the original manifol...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Harada, Megumi
Otros Autores: Karshon, Yael, Masuda, Mikiya, Panov, Taras E.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence : American Mathematical Society, 2008.
Colección:Contemporary Mathematics Ser.
Temas:
Acceso en línea:Texto completo
Descripción
Sumario:Toric topology is the study of algebraic, differential, symplectic-geometric, combinatorial, and homotopy-theoretic aspects of a particular class of torus actions whose quotients are highly structured. The combinatorial properties of this quotient and the equivariant topology of the original manifold interact in a rich variety of ways, thus illuminating subtle aspects of both the combinatorics and the equivariant topology. Many of the motivations and guiding principles of the field are provided by (though not limited to) the theory of toric varieties in algebraic geometry as well as that of sy.
Descripción Física:1 online resource (424 pages)
ISBN:9780821881392
0821881396