Cargando…

Machine Learning Solutions : Expert techniques to tackle complex machine learning problems using Python.

This book demonstrates a set of simple to complex problems you may encounter while building machine learning models. You'll not only learn the best possible solutions to these problems but also find out how to build projects based on each problem mentioned in the book, with a practical approach...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Thanaki, Jalaj
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, 2018.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_on1035519008
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 180512s2018 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d YDX  |d MERUC  |d IDB  |d CHVBK  |d OCLCO  |d OCLCF  |d NLE  |d TEFOD  |d OCLCQ  |d LVT  |d N$T  |d UKAHL  |d C6I  |d OCLCQ  |d K6U  |d UKMGB  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d TMA  |d OCLCQ 
015 |a GBC205778  |2 bnb 
016 7 |a 018867852  |2 Uk 
019 |a 1035277256  |a 1040683075  |a 1290097412 
020 |a 9781788398893  |q (electronic bk.) 
020 |a 1788398890  |q (electronic bk.) 
020 |z 9781788390040 
029 1 |a CHNEW  |b 001016270 
029 1 |a CHVBK  |b 52313262X 
029 1 |a AU@  |b 000067095929 
029 1 |a UKMGB  |b 018867852 
035 |a (OCoLC)1035519008  |z (OCoLC)1035277256  |z (OCoLC)1040683075  |z (OCoLC)1290097412 
037 |a B2E5CEF3-5FA3-40D2-8CFC-C28DD0253174  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QA76.73.P98  |b .T436 2018eb 
072 7 |a COM  |x 037000  |2 bisacsh 
072 7 |a COM  |x 051360  |2 bisacsh 
082 0 4 |a 005.133  |2 23 
049 |a UAMI 
100 1 |a Thanaki, Jalaj. 
245 1 0 |a Machine Learning Solutions :  |b Expert techniques to tackle complex machine learning problems using Python. 
260 |a Birmingham :  |b Packt Publishing,  |c 2018. 
300 |a 1 online resource (567 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Cover; Copyright; Foreword; Contributors; Table of Contents; Preface; Chapter 1: Credit Risk Modeling; Introducing the problem statement; Understanding the dataset; Understanding attributes of the dataset; Data analysis; Data preprocessing; Basic data analysis followed by data preprocessing; Number of dependents; Feature engineering for the baseline model; Finding out Feature importance; Selecting machine learning algorithms; K-Nearest Neighbor (KNN); Logistic regression; AdaBoost; GradientBoosting; RandomForest; Training the baseline model; Understanding the testing matrix. 
505 8 |a The Mean accuracy of the trained modelsThe ROC-AUC score; ROC; AUC; Testing the baseline model; Problems with the existing approach; Optimizing the existing approach; Understanding key concepts to optimize the approach; Cross-validation; Hyperparameter tuning; Implementing the revised approach; Implementing a cross-validation based approach; Implementing hyperparameter tuning; Implementing and testing the revised approach; Understanding problems with the revised approach; Best approach; Implementing the best approach; Log transformation of features; Voting-based ensemble ML model. 
505 8 |a Running ML models on real test dataSummary; Chapter 2: Stock Market Price Prediction; Introducing the problem statement; Collecting the dataset; Collecting DJIA index prices; Collecting news articles; Understanding the dataset; Understanding the DJIA dataset; Understanding the NYTimes news article dataset; Data preprocessing and data analysis; Preparing the DJIA training dataset; Basic data analysis for a DJIA dataset; Preparing the NYTimes news dataset; Converting publication date into the YYYY-MM-DD format; Filtering news articles by category. 
505 8 |a Implementing the filter functionality and merging the datasetSaving the merged dataset in the pickle file format; Feature engineering; Loading the dataset; Minor preprocessing; Converting adj close price into the integer format; Removing the leftmost dot from news headlines; Feature engineering; Sentiment analysis of NYTimes news articles; Selecting the Machine Learning algorithm; Training the baseline model; Splitting the training and testing dataset; Splitting prediction labels for the training and testing datasets; Converting sentiment scores into the numpy array; Training of the ML model. 
505 8 |a Understanding the testing matrixThe default testing matrix; The visualization approach; Testing the baseline model; Generating and interpreting the output; Generating the accuracy score; Visualizing the output; Exploring problems with the existing approach; Alignment; Smoothing; Trying a different ML algorithm; Understanding the revised approach; Understanding concepts and approaches; Alignment-based approach; Smoothing-based approach; Logistic Regression-based approach; Implementing the revised approach; Implementation; Implementing alignment; Implementing smoothing. 
500 |a Implementing logistic regression. 
520 |a This book demonstrates a set of simple to complex problems you may encounter while building machine learning models. You'll not only learn the best possible solutions to these problems but also find out how to build projects based on each problem mentioned in the book, with a practical approach and easy-to-follow examples. 
504 |a Includes bibliographical references and index. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Python. 
650 0 |a Machine learning. 
650 6 |a Apprentissage automatique. 
650 7 |a Information technology: general issues.  |2 bicssc 
650 7 |a Neural networks & fuzzy systems.  |2 bicssc 
650 7 |a Artificial intelligence.  |2 bicssc 
650 7 |a COMPUTERS  |x Machine Theory.  |2 bisacsh 
650 7 |a COMPUTERS  |x Programming Languages  |x Python.  |2 bisacsh 
650 7 |a Computers  |x Information Technology.  |2 bisacsh 
650 7 |a Computers  |x Neural Networks.  |2 bisacsh 
650 7 |a Computers  |x Intelligence (AI) & Semantics.  |2 bisacsh 
650 7 |a Machine learning  |2 fast 
758 |i has work:  |a Machine learning solutions (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGYRctRqt4pVfrbD86CKQy  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Thanaki, Jalaj.  |t Machine Learning Solutions : Expert techniques to tackle complex machine learning problems using Python.  |d Birmingham : Packt Publishing, ©2018 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5379696  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n BDZ0036705475 
938 |a EBL - Ebook Library  |b EBLB  |n EBL5379696 
938 |a EBSCOhost  |b EBSC  |n 1804693 
938 |a YBP Library Services  |b YANK  |n 15343693 
994 |a 92  |b IZTAP