Cargando…

Hands-On Automated Machine Learning : a beginner's guide to building automated machine learning systems using AutoML and Python.

This book helps machine learning professionals in developing AutoML systems that can be utilized to build ML solutions. This book covers the necessary foundations and shows the most practical ways possible to get to speed with regards to creating AutoML modules.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Das, Sibanjan
Otros Autores: Mert Cakmak, Umit
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, 2018.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_on1034626960
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 180505s2018 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d MERUC  |d IDB  |d CHVBK  |d OCLCO  |d OCLCF  |d NLE  |d TEFOD  |d OCLCQ  |d UKMGB  |d LVT  |d N$T  |d OCL  |d UKAHL  |d C6I  |d RDF  |d OCLCQ  |d UX1  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
015 |a GBB882199  |2 bnb 
016 7 |a 018853888  |2 Uk 
019 |a 1175642093 
020 |a 9781788622288  |q (electronic bk.) 
020 |a 1788622286  |q (electronic bk.) 
020 |a 9781788629898 
020 |a 1788629892  |q (Trade Paper) 
024 3 |a 9781788629898 
029 1 |a CHNEW  |b 001016209 
029 1 |a CHVBK  |b 523131992 
029 1 |a UKMGB  |b 018853888 
029 1 |a AU@  |b 000067114550 
035 |a (OCoLC)1034626960  |z (OCoLC)1175642093 
037 |a 5529DFC2-4AF6-408E-9588-2814662BFFBF  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QA76.73.P98  |b .D37 2018eb 
072 7 |a COM  |x 037000  |2 bisacsh 
072 7 |a COM  |x 051360  |2 bisacsh 
082 0 4 |a 005.133  |2 23 
083 0 |a 006.31.  |2 23/nor  |q NO-OsHOA 
049 |a UAMI 
100 1 |a Das, Sibanjan. 
245 1 0 |a Hands-On Automated Machine Learning :  |b a beginner's guide to building automated machine learning systems using AutoML and Python. 
260 |a Birmingham :  |b Packt Publishing,  |c 2018. 
300 |a 1 online resource (273 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Cover; Copyright and Credits; Packt Upsell; Contributors; Table of Contents; Preface; Chapter 1: Introduction to AutoML; Scope of machine learning; What is AutoML?; Why use AutoML and how does it help?; When do you automate ML?; What will you learn?; Core components of AutoML systems; Automated feature preprocessing; Automated algorithm selection; Hyperparameter optimization; Building prototype subsystems for each component; Putting it all together as an end-to-end AutoML system; Overview of AutoML libraries; Featuretools; Auto-sklearn; MLBox; TPOT; Summary. 
505 8 |a Chapter 2: Introduction to Machine Learning Using PythonTechnical requirements; Machine learning; Machine learning process; Supervised learning; Unsupervised learning; Linear regression; What is linear regression?; Working of OLS regression; Assumptions of OLS; Where is linear regression used?; By which method can linear regression be implemented?; Important evaluation metrics -- regression algorithms; Logistic regression; What is logistic regression?; Where is logistic regression used?; By which method can logistic regression be implemented? 
505 8 |a Important evaluation metrics -- classification algorithmsDecision trees; What are decision trees?; Where are decision trees used?; By which method can decision trees be implemented?; Support Vector Machines; What is SVM?; Where is SVM used?; By which method can SVM be implemented?; k-Nearest Neighbors; What is k-Nearest Neighbors?; Where is KNN used?; By which method can KNN be implemented?; Ensemble methods; What are ensemble models?; Bagging; Boosting; Stacking/blending; Comparing the results of classifiers; Cross-validation; Clustering; What is clustering?; Where is clustering used? 
505 8 |a By which method can clustering be implemented?Hierarchical clustering; Partitioning clustering (KMeans); Summary; Chapter 3: Data Preprocessing; Technical requirements; Data transformation; Numerical data transformation; Scaling; Missing values; Outliers; Detecting and treating univariate outliers; Inter-quartile range; Filtering values; Winsorizing; Trimming; Detecting and treating multivariate outliers; Binning; Log and power transformations; Categorical data transformation; Encoding; Missing values for categorical data transformation; Text preprocessing; Feature selection. 
505 8 |a Excluding features with low varianceUnivariate feature selection; Recursive feature elimination; Feature selection using random forest; Feature selection using dimensionality reduction; Principal Component Analysis; Feature generation; Summary; Chapter 4: Automated Algorithm Selection; Technical requirements; Computational complexity; Big O notation; Differences in training and scoring time; Simple measure of training and scoring time ; Code profiling in Python; Visualizing performance statistics; Implementing k-NN from scratch; Profiling your Python script line by line. 
500 |a Linearity versus non-linearity. 
520 |a This book helps machine learning professionals in developing AutoML systems that can be utilized to build ML solutions. This book covers the necessary foundations and shows the most practical ways possible to get to speed with regards to creating AutoML modules. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Python (Computer program language) 
650 0 |a Machine learning. 
650 6 |a Python (Langage de programmation) 
650 6 |a Apprentissage automatique. 
650 7 |a COMPUTERS  |x Machine Theory.  |2 bisacsh 
650 7 |a COMPUTERS  |x Programming Languages  |x Python.  |2 bisacsh 
650 7 |a Python (Computer program language)  |2 fast 
650 7 |a Machine learning  |2 fast 
700 1 |a Mert Cakmak, Umit. 
758 |i has work:  |a Hands-On Automated Machine Learning (Text)  |1 https://id.oclc.org/worldcat/entity/E39PD3d7gmfy9ybTGvy7CTcCtq  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Das, Sibanjan.  |t Hands-On Automated Machine Learning : A beginner's guide to building automated machine learning systems using AutoML and Python.  |d Birmingham : Packt Publishing, ©2018 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5371679  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH34379594 
938 |a EBL - Ebook Library  |b EBLB  |n EBL5371679 
938 |a EBSCOhost  |b EBSC  |n 1801012 
994 |a 92  |b IZTAP