Cargando…

Selected Topics in Analysis and Its Applications.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ruzhansky, Michael
Otros Autores: Dutta, Hemen, Agarwal, Ravi P.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Newark : John Wiley & Sons, Incorporated, 2018.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_on1031967446
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 180421s2018 nju o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d DEBBG  |d OCLCQ  |d SGP  |d OCLCF  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
020 |a 9781119414308 
020 |a 111941430X 
029 1 |a AU@  |b 000067288767 
035 |a (OCoLC)1031967446 
050 4 |a QA300  |b .M225 2018 
082 0 4 |a 515  |2 23 
049 |a UAMI 
100 1 |a Ruzhansky, Michael. 
245 1 0 |a Selected Topics in Analysis and Its Applications. 
260 |a Newark :  |b John Wiley & Sons, Incorporated,  |c 2018. 
300 |a 1 online resource (766 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Cover; Title Page; Copyright; Contents; Preface; About the Editors; List of Contributors; Chapter 1 Spaces of Asymptotically Developable Functions and Applications; 1.1 Introduction and Some Notations; 1.2 Strong Asymptotic Expansions; 1.3 Monomial Asymptotic Expansions; 1.4 Monomial Summability for Singularly Perturbed Differential Equations; 1.5 Pfaffian Systems; References; Chapter 2 Duality for Gaussian Processes from Random Signed Measures; 2.1 Introduction; 2.2 Reproducing Kernel Hilbert Spaces (RKHSs) in the Measurable Category; 2.3 Applications to Gaussian Processes. 
505 8 |a 2.4 Choice of Probability Space2.5 A Duality; 2.A Stochastic Processes; 2.B Overview of Applications of RKHSs; Acknowledgments; References; Chapter 3 Many-Body Wave Scattering Problems for Small Scatterers and Creating Materials with a Desired Refraction Coefficient; 3.1 Introduction; 3.2 Derivation of the Formulas for One-Body Wave Scattering Problems; 3.3 Many-Body Scattering Problem; 3.3.1 The Case of Acoustically Soft Particles; 3.3.2 Wave Scattering by Many Impedance Particles; 3.4 Creating Materials with a Desired Refraction Coefficient. 
505 8 |a 3.5 Scattering by Small Particles Embedded in an Inhomogeneous Medium3.6 Conclusions; References; Chapter 4 Generalized Convex Functions and their Applications; 4.1 Brief Introduction; 4.2 Generalized E-Convex Functions; 4.3 Ea- Epigraph; 4.4 Generalized s-Convex Functions; 4.5 Applications to Special Means; References; Chapter 5 Some Properties and Generalizations of the Catalan, Fuss, and Fuss-Catalan Numbers; 5.1 The Catalan Numbers; 5.1.1 A Definition of the Catalan Numbers; 5.1.2 The History of the Catalan Numbers; 5.1.3 A Generating Function of the Catalan Numbers. 
505 8 |a 5.1.4 Some Expressions of the Catalan Numbers5.1.5 Integral Representations of the Catalan Numbers; 5.1.6 Asymptotic Expansions of the Catalan Function; 5.1.7 Complete Monotonicity of the Catalan Numbers; 5.1.8 Inequalities of the Catalan Numbers and Function; 5.1.9 The Bell Polynomials of the Second Kind and the Bessel Polynomials; 5.2 The Catalan-Qi Function; 5.2.1 The Fuss Numbers; 5.2.2 A Definition of the Catalan-Qi Function; 5.2.3 Some Identities of the Catalan-Qi Function; 5.2.4 Integral Representations of the Catalan-Qi Function; 5.2.5 Asymptotic Expansions of the Catalan-Qi Function. 
505 8 |a 5.2.6 Complete Monotonicity of the Catalan-Qi Function5.2.7 Schur-Convexity of the Catalan-Qi Function; 5.2.8 Generating Functions of the Catalan-Qi Numbers; 5.2.9 A Double Inequality of the Catalan-Qi Function; 5.2.10 The q-Catalan-Qi Numbers and Properties; 5.2.11 The Catalan Numbers and the k-Gamma and k-Beta Functions; 5.2.12 Series Identities Involving the Catalan Numbers; 5.3 The Fuss-Catalan Numbers; 5.3.1 A Definition of the Fuss-Catalan Numbers; 5.3.2 A Product-Ratio Expression of the Fuss-Catalan Numbers; 5.3.3 Complete Monotonicity of the Fuss-Catalan Numbers. 
500 |a 5.3.4 A Double Inequality for the Fuss-Catalan Numbers. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Mathematical analysis. 
650 6 |a Analyse mathématique. 
650 7 |a Mathematical analysis  |2 fast 
700 1 |a Dutta, Hemen. 
700 1 |a Agarwal, Ravi P. 
758 |i has work:  |a Selected Topics in Analysis and Its Applications (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCYpkHcKP3HJQDKx7XcTgQV  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Ruzhansky, Michael.  |t Selected Topics in Analysis and Its Applications.  |d Newark : John Wiley & Sons, Incorporated, ©2018  |z 9781119414346 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5341960  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5341960 
994 |a 92  |b IZTAP