Cargando…

Deep Learning with TensorFlow : Explore neural networks and build intelligent systems with Python, 2nd Edition.

Compliant with TensorFlow 1.7, this book introduces the core concepts of deep learning. Get implementation and research details on cutting-edge architectures and apply advanced concepts to your own projects. Develop your knowledge of deep neural networks through hands-on model building and examples...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Zaccone, Giancarlo
Otros Autores: Karim, Md. Rezaul
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, 2018.
Edición:2nd ed.
Temas:
Acceso en línea:Texto completo
Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_on1031338741
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 180414s2018 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d MERUC  |d IDB  |d OCLCF  |d OCLCO  |d VT2  |d TEFOD  |d OCLCQ  |d UMI  |d STF  |d TOH  |d CEF  |d DEBBG  |d N$T  |d YDX  |d OCLCQ  |d LVT  |d C6I  |d OCLCQ  |d NLW  |d OCLCO  |d NZAUC  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 1031336792  |a 1031364126  |a 1035160358  |a 1050965054  |a 1103279314 
020 |a 9781788831833  |q (electronic bk.) 
020 |a 1788831837  |q (electronic bk.) 
020 |a 1788831101 
020 |a 9781788831109 
020 |z 9781788831109 
020 |z 1788831101 
024 3 |a 9781788831109 
029 1 |a AU@  |b 000066968541 
029 1 |a AU@  |b 000069787313 
035 |a (OCoLC)1031338741  |z (OCoLC)1031336792  |z (OCoLC)1031364126  |z (OCoLC)1035160358  |z (OCoLC)1050965054  |z (OCoLC)1103279314 
037 |a B09698  |b 01201872 
037 |a 0367695A-23B9-4FCB-A3CD-2CC3069BA411  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a Q325.5  |b .Z333 2018eb 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.31  |2 23 
049 |a UAMI 
100 1 |a Zaccone, Giancarlo. 
245 1 0 |a Deep Learning with TensorFlow :  |b Explore neural networks and build intelligent systems with Python, 2nd Edition. 
250 |a 2nd ed. 
260 |a Birmingham :  |b Packt Publishing,  |c 2018. 
300 |a 1 online resource (483 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Cover; Copyright; Packt Upsell; Contributors; Table of Contents; Preface; Chapter 1: Getting Started with Deep Learning; A soft introduction to machine learning; Supervised learning; Unbalanced data; Unsupervised learning; Reinforcement learning; What is deep learning?; Artificial neural networks; The biological neurons; The artificial neuron; How does an ANN learn?; ANNs and the backpropagation algorithm; Weight optimization; Stochastic gradient descent; Neural network architectures; Deep Neural Networks (DNNs); Multilayer perceptron; Deep Belief Networks (DBNs). 
505 8 |a Convolutional Neural Networks (CNNs)AutoEncoders; Recurrent Neural Networks (RNNs); Emergent architectures; Deep learning frameworks; Summary; Chapter 2: A First Look at TensorFlow; A general overview of TensorFlow; What's new in TensorFlow v1.6?; Nvidia GPU support optimized; Introducing TensorFlow Lite; Eager execution; Optimized Accelerated Linear Algebra (XLA); Installing and configuring TensorFlow; TensorFlow computational graph; TensorFlow code structure; Eager execution with TensorFlow; Data model in TensorFlow; Tensor; Rank and shape; Data type; Variables; Fetches. 
505 8 |a Feeds and placeholdersVisualizing computations through TensorBoard; How does TensorBoard work?; Linear regression and beyond; Linear regression revisited for a real dataset; Summary; Chapter 3: Feed-Forward Neural Networks with TensorFlow; Feed-forward neural networks (FFNNs); Feed-forward and backpropagation; Weights and biases; Activation functions; Using sigmoid; Using tanh; Using ReLU; Using softmax; Implementing a feed-forward neural network; Exploring the MNIST dataset; Softmax classifier; Implementing a multilayer perceptron (MLP); Training an MLP; Using MLPs; Dataset description. 
505 8 |a PreprocessingA TensorFlow implementation of MLP for client-subscription assessment; Deep Belief Networks (DBNs); Restricted Boltzmann Machines (RBMs); Construction of a simple DBN; Unsupervised pre-training; Supervised fine-tuning; Implementing a DBN with TensorFlow for client-subscription assessment; Tuning hyperparameters and advanced FFNNs; Tuning FFNN hyperparameters; Number of hidden layers; Number of neurons per hidden layer; Weight and biases initialization; Selecting the most suitable optimizer; GridSearch and randomized search for hyperparameters tuning; Regularization. 
505 8 |a Dropout optimizationSummary; Chapter 4: Convolutional Neural Networks; Main concepts of CNNs; CNNs in action; LeNet5; Implementing a LeNet-5 step by step; AlexNet; Transfer learning; Pretrained AlexNet; Dataset preparation; Fine-tuning implementation; VGG; Artistic style learning with VGG-19; Input images; Content extractor and loss; Style extractor and loss; Merger and total loss; Training; Inception-v3; Exploring Inception with TensorFlow; Emotion recognition with CNNs; Testing the model on your own image; Source code; Summary; Chapter 5: Optimizing TensorFlow Autoencoders. 
500 |a How does an autoencoder work? 
520 |a Compliant with TensorFlow 1.7, this book introduces the core concepts of deep learning. Get implementation and research details on cutting-edge architectures and apply advanced concepts to your own projects. Develop your knowledge of deep neural networks through hands-on model building and examples of real-world data collection. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Machine learning. 
650 0 |a Artificial intelligence. 
650 0 |a Python (Computer program language) 
650 2 |a Artificial Intelligence 
650 2 |a Machine Learning 
650 6 |a Apprentissage automatique. 
650 6 |a Intelligence artificielle. 
650 6 |a Python (Langage de programmation) 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a Web programming.  |2 bicssc 
650 7 |a Programming & scripting languages: general.  |2 bicssc 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Artificial intelligence  |2 fast 
650 7 |a Machine learning  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
700 1 |a Karim, Md. Rezaul. 
758 |i has work:  |a Deep learning with TensorFlow (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGBwq3xDhmKVPPgpJgH3PP  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Zaccone, Giancarlo.  |t Deep Learning with TensorFlow : Explore neural networks and build intelligent systems with Python, 2nd Edition.  |d Birmingham : Packt Publishing, ©2018 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5340529  |z Texto completo 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781788831109/?ar  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5340529 
938 |a EBSCOhost  |b EBSC  |n 1789473 
938 |a YBP Library Services  |b YANK  |n 15269245 
994 |a 92  |b IZTAP