Cargando…

Holomorphic automorphic forms and cohomology /

"We investigate the correspondence between holomorphic automorphic forms on the upper half-plane with complex weight and parabolic cocycles. For integral weights at least 2 this correspondence is given by the Eichler integral. We use Knopp's generalization of this integral to real weights,...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Bruggeman, Roelof W., 1944- (Autor), Choie, YoungJu (Autor), Diamantis, Nikolaos, 1970- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, RI : American Mathematical Society, 2018.
Colección:Memoirs of the American Mathematical Society ; no. 1212.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_on1030965643
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 180410t20182018riua ob 001 u eng d
040 |a UAB  |b eng  |e rda  |e pn  |c UAB  |d GZM  |d OCLCF  |d UIU  |d COD  |d YDX  |d STF  |d N$T  |d EBLCP  |d IDB  |d INT  |d OCLCQ  |d COO  |d OCLCQ  |d LEAUB  |d OCLCQ  |d OCLCA  |d OCLCQ  |d UKAHL  |d VT2  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d S9M  |d OCLCL 
019 |a 1039703904  |a 1262691010 
020 |a 9781470444198  |q (electronic bk.) 
020 |a 1470444194  |q (electronic bk.) 
020 |z 9781470428556  |q (print) 
020 |z 1470428555 
035 |a (OCoLC)1030965643  |z (OCoLC)1039703904  |z (OCoLC)1262691010 
050 4 |a QA612 
072 7 |a MAT  |x 002040  |2 bisacsh 
082 0 4 |a 512.7/3  |2 23 
049 |a UAMI 
100 1 |a Bruggeman, Roelof W.,  |d 1944-  |e author. 
245 1 0 |a Holomorphic automorphic forms and cohomology /  |c Roelof Bruggeman, YoungJu Choie, Nikolaos Diamantis. 
264 1 |a Providence, RI :  |b American Mathematical Society,  |c 2018. 
264 4 |c ©2018 
300 |a 1 online resource (vii, 167 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 1947-6221 ;  |v volume 253, number 1212 
588 0 |a Print version record. 
500 |a "May 2018, volume 253, number 1212 (seventh of 7 numbers)." 
504 |a Includes bibliographical references (pages 159-163) and index. 
520 3 |a "We investigate the correspondence between holomorphic automorphic forms on the upper half-plane with complex weight and parabolic cocycles. For integral weights at least 2 this correspondence is given by the Eichler integral. We use Knopp's generalization of this integral to real weights, and apply it to complex weights that are not an integer at least 2. We show that for these weights the generalized Eichler integral gives an injection into the first cohomology group with values in a module of holomorphic functions, and characterize the image. We impose no condition on the growth of the automorphic forms at the cusps. Our result concerns arbitrary cofinite discrete groups with cusps, and covers exponentially growing automorphic forms, like those studied by Borcherds, and like those in the theory of mock automorphic forms 
520 3 |a For real weights that are not an integer at least 2 we similarly characterize the space of cusp forms and the space of entire automorphic forms. We give a relation between the cohomology classes attached to holomorphic automorphic forms of real weight and the existence of harmonic lifts. 
520 3 |a A tool in establishing these results is the relation to cohomology groups with values in modules of "analytic boundary germs", which are represented by harmonic functions on subsets of the upper half-plane. It turns out that for integral weights at least 2 the map from general holomorphic automorphic forms to cohomology with values in analytic boundary germs is injective. So cohomology with these coefficients can distinguish all holomorphic automorphic forms, unlike the classical Eichler theory."--Page vii 
505 0 |a Introduction -- pt. 1 Cohomology with values in holomorphic functions -- Definitions and notations -- Modules and cocycles -- The image of automorphic forms in cohomology -- One-sided averages -- pt. 2 Harmonic Functions -- Harmonic functions and cohomology -- Boundary germs -- Polar harmonic functions -- pt. 3 Cohomology with values in analytic boundary germs -- Highest weight spaces of analytic boundary germs -- Tesselation and cohomology -- Boundary germ bohomology and automorphic forms -- Automorphic forms of integral weights at least 2 and analytic boundary germ cohomology -- pt. 4 Miscellaneous -- Isomorphisms between parabolic cohomology groups -- Cocycles and singularities -- Quantum automorphic forms -- Remarks on the literature. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Algebraic topology. 
650 6 |a Topologie algébrique. 
650 7 |a MATHEMATICS  |x Algebra  |x Intermediate.  |2 bisacsh 
650 7 |a Topología  |2 embne 
650 7 |a Algebraic topology  |2 fast 
700 1 |a Choie, YoungJu,  |e author. 
700 1 |a Diamantis, Nikolaos,  |d 1970-  |e author. 
710 2 |a American Mathematical Society,  |e publisher. 
758 |i has work:  |a Holomorphic automorphic forms and cohomology (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFTFfKwWGwgwxQp4btJ4Md  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Bruggeman, Roelof W.  |t Holomorphic automorphic forms and cohomology.  |d Providence, R.I. : American Mathematical Society, 2018  |z 1470428555  |w (OCoLC)1024161016 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1212. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5409173  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37445169 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5409173 
938 |a EBSCOhost  |b EBSC  |n 1824505 
938 |a YBP Library Services  |b YANK  |n 15498903 
994 |a 92  |b IZTAP