Cargando…

Deep Learning Quick Reference : Useful hacks for training and optimizing deep neural networks with TensorFlow and Keras.

This book is a practical guide to applying deep neural networks including MLPs, CNNs, LSTMs, and more in Keras and TensorFlow. Packed with useful hacks to solve real-world challenges along with the supported math and theory around each topic, this book will be a quick reference for training and opti...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bernico, Michael
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, 2018.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_on1029492030
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 180324s2018 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d MERUC  |d OCLCQ  |d IDB  |d OCLCF  |d OCLCO  |d VT2  |d TEFOD  |d OCLCQ  |d LVT  |d C6I  |d UKAHL  |d OCLCQ  |d N$T  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |a 9781788838917  |q (electronic bk.) 
020 |a 1788838912  |q (electronic bk.) 
029 1 |a AU@  |b 000066231573 
029 1 |a AU@  |b 000067096784 
035 |a (OCoLC)1029492030 
037 |a F6EC244B-6802-4D99-97D8-621B341CAEF7  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a Z678.93.O65  |b .B476 2018eb 
082 0 4 |a 005.3  |2 23 
049 |a UAMI 
100 1 |a Bernico, Michael. 
245 1 0 |a Deep Learning Quick Reference :  |b Useful hacks for training and optimizing deep neural networks with TensorFlow and Keras. 
260 |a Birmingham :  |b Packt Publishing,  |c 2018. 
300 |a 1 online resource (261 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Cover; Copyright and Credits; Dedication; Packt Upsell; Foreword; Contributors; Table of Contents; Preface; Chapter 1: The Building Blocks of Deep Learning; The deep neural network architectures; Neurons; The neuron linear function; Neuron activation functions; The loss and cost functions in deep learning; The forward propagation process; The back propagation function; Stochastic and minibatch gradient descents; Optimization algorithms for deep learning; Using momentum with gradient descent; The RMSProp algorithm; The Adam optimizer; Deep learning frameworks; What is TensorFlow? 
505 8 |a What is Keras?Popular alternatives to TensorFlow; GPU requirements for TensorFlow and Keras; Installing Nvidia CUDA Toolkit and cuDNN; Installing Python; Installing TensorFlow and Keras; Building datasets for deep learning; Bias and variance errors in deep learning; The train, val, and test datasets; Managing bias and variance in deep neural networks; K-Fold cross-validation; Summary; Chapter 2: Using Deep Learning to Solve Regression Problems; Regression analysis and deep neural networks; Benefits of using a neural network for regression. 
505 8 |a Drawbacks to consider when using a neural network for regressionUsing deep neural networks for regression; How to plan a machine learning problem; Defining our example problem; Loading the dataset; Defining our cost function; Building an MLP in Keras; Input layer shape; Hidden layer shape; Output layer shape; Neural network architecture; Training the Keras model; Measuring the performance of our model; Building a deep neural network in Keras; Measuring the deep neural network performance; Tuning the model hyperparameters; Saving and loading a trained Keras model; Summary. 
505 8 |a Chapter 3: Monitoring Network Training Using TensorBoardA brief overview of TensorBoard; Setting up TensorBoard; Installing TensorBoard; How TensorBoard talks to Keras/TensorFlow; Running TensorBoard; Connecting Keras to TensorBoard; Introducing Keras callbacks; Creating a TensorBoard callback; Using TensorBoard; Visualizing training; Visualizing network graphs; Visualizing a broken network; Summary; Chapter 4: Using Deep Learning to Solve Binary Classification Problems; Binary classification and deep neural networks; Benefits of deep neural networks; Drawbacks of deep neural networks. 
505 8 |a Case study â#x80;#x93; epileptic seizure recognitionDefining our dataset; Loading data; Model inputs and outputs; The cost function; Using metrics to assess the performance; Building a binary classifier in Keras; The input layer; The hidden layers; What happens if we use too many neurons?; What happens if we use too few neurons?; Choosing a hidden layer architecture; Coding the hidden layers for our example; The output layer; Putting it all together; Training our model; Using the checkpoint callback in Keras; Measuring ROC AUC in a custom callback; Measuring precision, recall, and f1-score; Summary. 
500 |a Chapter 5: Using Keras to Solve Multiclass Classification Problems. 
520 |a This book is a practical guide to applying deep neural networks including MLPs, CNNs, LSTMs, and more in Keras and TensorFlow. Packed with useful hacks to solve real-world challenges along with the supported math and theory around each topic, this book will be a quick reference for training and optimize your deep neural networks. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Open source software  |x Library applications. 
650 6 |a Logiciels libres dans les bibliothèques. 
650 7 |a Open source software  |x Library applications  |2 fast 
776 0 8 |i Print version:  |a Bernico, Michael.  |t Deep Learning Quick Reference : Useful hacks for training and optimizing deep neural networks with TensorFlow and Keras.  |d Birmingham : Packt Publishing, ©2018 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5322203  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH34068420 
938 |a EBL - Ebook Library  |b EBLB  |n EBL5322203 
938 |a EBSCOhost  |b EBSC  |n 1733802 
994 |a 92  |b IZTAP